2 research outputs found

    Health Risk Assessment of Heavy Metals on Primary School Learners from Dust and Soil within School Premises in Lagos State, Nigeria

    Get PDF
    This chapter is aimed at evaluating learner’s health risk based on the concentration of toxic metals (Pb, Cr, Cd and Mn) in soil/dust from playgrounds/classrooms in selected primary schools in Lagos State. Samples were divided into four groups based on the density of the locations. Concentration of toxic metals in samples were determined by Graphite Furnace Atomic Absorption Spectrophotometer (GFA-EX7) technique after microwave digestion. The result showed that some of the heavy metals in the soil were higher than permissible limits set by DPR, FEPA and WHO. The soil/dust were contaminated with Cr, Cd and Pb but Mn was within permissible limit. Due to exposure to playground soil and classroom dust, hazardous index (HI) for non-carcinogenic/carcinogenic risk in children was estimated. HI value indicated that the heavy metal pollution may pose no obvious non-cancer health risk to children learning in such schools. However, children via ingestion pathway are exposed to the greatest carcinogenic risk followed by the inhalation pathway. The cancer risk for learners was found to be 3.2 × 10−2 (1 in 31 individuals). Hence, there is need for local environmental authorities to be warned about the potential health risks caused by heavy metals in playground/classroom

    Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC technical report)

    Get PDF
    The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare earth elements) and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern due to widespread illegal shipments, weak environmental as well as health and safety regulations, lack of technology and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders to devise integrated management strategies to tackle this global environmental concern
    corecore