125 research outputs found

    Local density of states of electron-crystal phases in graphene in the quantum Hall regime

    Full text link
    We calculate, within a self-consistent Hartree-Fock approximation, the local density of states for different electron crystals in graphene subject to a strong magnetic field. We investigate both the Wigner crystal and bubble crystals with M_e electrons per lattice site. The total density of states consists of several pronounced peaks, the number of which in the negative energy range coincides with the number of electrons M_e per lattice site, as for the case of electron-solid phases in the conventional two-dimensional electron gas. Analyzing the local density of states at the peak energies, we find particular scaling properties of the density patterns if one fixes the ratio nu_N/M_e between the filling factor nu_N of the last partially filled Landau level and the number of electrons per bubble. Although the total density profile depends explicitly on M_e, the local density of states of the lowest peaks turns out to be identical regardless the number of electrons M_e. Whereas these electron-solid phases are reminiscent to those expected in the conventional two-dimensional electron gas in GaAs heterostructures in the quantum Hall regime, the local density of states and the scaling relations we highlight in this paper may be, in graphene, directly measured by spectroscopic means, such as e.g. scanning tunneling microscopy.Comment: 8 pages, 7 figures; minor correction

    Enhancing electron affinity and tuning band gap in donorā€“acceptor organic semiconductors by benzothiadiazole directed Cā€“H borylation

    Get PDF
    Electrophilic borylation using BCl3 and benzothiadiazole to direct the Cā€“H functionalisation of an adjacent aromatic unit produces fused boracyclic materials with minimally changed HOMO energy levels but significantly reduced LUMO energy levels. In situ alkylation and arylation at boron using Al(alkyl)3 or Zn(aryl)2 is facile and affords boracycles that possess excellent stability towards protic solvents, including water, and display large bathochromic shifts leading to far red/NIR emission in the solid state with quantum yields of up to 34%. Solution fabricated OLEDs with far red/NIR electroluminescence are reported with EQEs > 0.4%

    Defect-mediated metastability and carrier lifetimes in polycrystalline (Ag,Cu)(In,Ga)Se-2 absorber materials

    Get PDF
    Using a combination of optical and electrical measurements, we develop a model for metastable defects in Ag-alloyed Cu(In,Ga)Se-2, one of the leading thin film photovoltaic materials. By controlling the pre-selenization conditions of the back contact prior to the growth of polycrystalline (Ag,Cu)(In,Ga)Se-2 absorbers and subsequently exposing them to various stresses (light soaking and dark-heat), we explore the nature and role of metastable defects on the electro-optical and photovoltaic performance of high-efficiency solar cell materials and devices. Positron annihilation spectroscopy indicates that dark-heat exposure results in an increase in the concentration of the selenium-copper divacancy complex (V-Se-V-Cu), attributed to depassivation of donor defects. Deep-level optical spectroscopy finds a corresponding increase of a defect at E-v+0.98eV, and deep-level transient spectroscopy suggests that this increase is accompanied by a decrease in the concentration of mid-bandgap recombination centers. Time-resolved photoluminescence excitation spectroscopy data are consistent with the presence of the V-Se-V-Cu divacancy complex, which may act as a shallow trap for the minority carriers. Light-soaking experiments are consistent with the V-Se-V-Cu optical cycle proposed by Lany and Zunger, resulting in the conversion of shallow traps into recombination states that limit the effective minority carrier recombination time (and the associated carrier diffusion length) and an increase in the doping density that limits carrier extraction in photovoltaic devices.Peer reviewe

    Hole injection and transport in organic semiconductors

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Ambipolar charge transport in films of methanofullerene and poly(phenylenevinylene)/methanofullerene blends

    No full text
    Herein, we report experimental studies of electron and hole transport in thin films of [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and in blends of poly[2-methoxy-5-(3ā€²,7ā€²-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) with PCBM. The low-field hole mobility in pristine MDMO-PPV is of the order of 10ā€“7ā€‰cm2ā€‰Vā€“1ā€‰sā€“1, in agreement with previous studies, whereas the electron mobility in pristine PCBM was found by current-densityā€“voltage (Jā€“V) measurements to be of the order of 10ā€“2ā€‰cm2ā€‰Vā€“1ā€‰sā€“1, which is about one order of magnitude greater than previously reported. Adding PCBM to the blend increases both electron and hole mobilities, compared to the pristine polymer, and results in less dispersive hole transport. The hole mobility in a blend containing 67ā€‰wt.-% PCBM is at least two orders of magnitude greater than in the pristine polymer. This result is independent of measurement technique and film thickness, indicating a true bulk property of the material. We therefore propose that PCBM may assist hole transport in the blend, either by participating in hole transport or by changing the polymer-chain packing to enhance hole mobility. Time-of-flight mobility measurements of PCBM dispersed in a polystyrene matrix yield electron and hole mobilities of similar magnitude and relatively non-dispersive transport. To the best of our knowledge, this is the first report of hole transport in a methanofullerene. We discuss the conditions under which hole transport in the fullerene phase of a polymer/fullerene blend may be expected. The relevance to photovoltaic device function is also discusse
    • ā€¦
    corecore