366 research outputs found

    Two-Channel Totally Asymmetric Simple Exclusion Processes

    Full text link
    Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. An extensive computer Monte Carlo simulations fully support the theoretical predictions.Comment: 13 pages, 10 figure

    Boundary-induced phase transitions in traffic flow

    Full text link
    Boundary-induced phase transitions are one of the surprising phenomena appearing in nonequilibrium systems. These transitions have been found in driven systems, especially the asymmetric simple exclusion process. However, so far no direct observations of this phenomenon in real systems exists. Here we present evidence for the appearance of such a nonequilibrium phase transition in traffic flow occurring on highways in the vicinity of on- and off-ramps. Measurements on a German motorway close to Cologne show a first-order nonequilibrium phase transition between a free-flow phase and a congested phase. It is induced by the interplay of density waves (caused by an on-ramp) and a shock wave moving on the motorway. The full phase diagram, including the effect of off-ramps, is explored using computer simulations and suggests means to optimize the capacity of a traffic network.Comment: 5 figures, revte

    Steady-state selection in driven diffusive systems with open boundaries

    Full text link
    We investigate the stationary states of one-dimensional driven diffusive systems, coupled to boundary reservoirs with fixed particle densities. We argue that the generic phase diagram is governed by an extremal principle for the macroscopic current irrespective of the local dynamics. In particular, we predict a minimal current phase for systems with local minimum in the current--density relation. This phase is explained by a dynamical phenomenon, the branching and coalescence of shocks, Monte-Carlo simulations confirm the theoretical scenario.Comment: 6 pages, 5 figure

    Changes of gas metabolism, gas homeostasis and tissue respiration in rats during prolonged hypokinesia

    Get PDF
    The oxygen uptake and tissue gas homeostasis of restrained albinic rats remained relatively constant during a 60 day experiment. The gas metabolism in some tissues changed, and O2 consumption increased in the liver and decreased in the myocardium. Capacity for physical work was reduced by five times. Hypokinesia for 60 days resulted in a delay in the animals growth

    Benzofurocaine: effects on experimental periodontitis, anti-diabetic activity and molecular mechanisms of action

    Get PDF
    A promising compound for the treatment of inflammatory periodontal diseases is benzofuracaine (BFC). BFC has pronounced anti-inflammatory, analgesic, reparative, hypoglycemic and other effects. Objective: To assess the influence of benzofuracaine on experimental periodontitis and to study its antidiabetic activity and molecular mechanisms of actio

    Changes of the body functions during long-term hypokinesia

    Get PDF
    Prolonged hypokinesis (100-170 days) studied in 2000 rats kept in cages limiting their mobility provoked considerable changes in the gaseous and energetic metabolism: an elevation of the total gaseous metabolism and of the rate of O2 requirement by the muscles (in the late periods of hypokinesis) and a change in the intensity of tissue respiration of the liver and myocardium. There also proved to be a reduction in the level of phosphorylation and separation of oxidative phosphorylation in the myocardium, liver, and partially in the skeletal muscle. Prolonged hypokinesia led to changes in tissue metabolism: a disturbance of development of the animals, a marked delay and an increase in the weight of the organism and the muscular system, and disturbances of the mineral and protein metabolism. Prolonged hypokinesis also lead to exhaustion of the hypothalamus-hypophysis-adrenal cortex system

    Lattice Statistics in Three Dimensions: Exact Solution of Layered Dimer and Layered Domain Wall Models

    Full text link
    Exact analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with nontrivial interlayer interactions. We show that both models are equivalent to a 5-vertex model on the square lattice with interlayer vertex-vertex interactions. Using the method of Bethe ansatz, a closed-form expression for the free energy is obtained and analyzed. We deduce the exact phase diagram and determine the nature of the phase transitions as a function of the strength of the interlayer interaction.Comment: 22 pages in Revtex, 6 PS files, submitted to PR

    Dynamic Singularities in Cooperative Exclusion

    Full text link
    We investigate cooperative exclusion, in which the particle velocity can be an increasing function of the density. Within a hydrodynamic theory, an initial density upsteps and downsteps can evolve into: (a) shock waves, (b) continuous compression or rarefaction waves, or (c) a mixture of shocks and continuous waves. These unusual phenomena arise because of an inflection point in the current versus density relation. This anomaly leads to a group velocity that can either be an increasing or a decreasing function of the density on either side of these wave singularities.Comment: 4 pages, 4 figures, 2 column revtex 4-1 format; version 2: substantially rewritten and put in IOP format, mail results unchanged; version 3: minor changes, final version for publication in JSTA

    Power spectra of TASEPs with a localized slow site

    Full text link
    The totally asymmetric simple exclusion process (TASEP) with a localized defect is revisited in this article with attention paid to the power spectra of the particle occupancy N(t). Intrigued by the oscillatory behaviors in the power spectra of an ordinary TASEP in high/low density phase(HD/LD) observed by Adams et al. (2007 Phys. Rev. Lett. 99 020601), we introduce a single slow site with hopping rate q<1 to the system. As the power spectrum contains time-correlation information of the particle occupancy of the system, we are particularly interested in how the defect affects fluctuation in particle number of the left and right subsystems as well as that of the entire system. Exploiting Monte Carlo simulations, we observe the disappearance of oscillations when the defect is located at the center of the system. When the defect is off center, oscillations are restored. To explore the origin of such phenomenon, we use a linearized Langevin equation to calculate the power spectrum for the sublattices and the whole lattice. We provide insights into the interactions between the sublattices coupled through the defect site for both simulation and analytical results.Comment: 16 pages, 6 figures; v2: Minor revision

    Theoretical Investigation of Totally Asymmetric Exclusion Processes on Lattices with Junctions

    Full text link
    Totally asymmetric simple exclusion processes on lattices with junctions, where particles interact with hard-core exclusion and move on parallel lattice branches that at the junction combine into a single lattice segment, are investigated. A simple approximate theory, that treats the correlations around the junction position in a mean-field fashion, is developed in order to calculate stationary particle currents, density profiles and a phase diagram. It is shown that there are three possible stationary phases depending on the state of each of the lattice branch. At first-order phase boundaries, where the density correlations are important, a modified phenomenological domain-wall theory, that accounts for correlations, is introduced. Extensive Monte Carlo computer simulations are performed to investigate the system, and it is found that they are in excellent agreement with theoretical predictions.Comment: 16 pages, 7 figure
    corecore