4,615 research outputs found

    Spectral properties of the largest asteroids associated with Taurid Complex

    Full text link
    We obtained spectra of six of the largest asteroids (2201, 4183, 4486, 5143, 6063, and 269690) associated with Taurid complex. The observations were made with the IRTF telescope equipped with the spectro-imager SpeX. Their taxonomic classification is made using Bus-DeMeo taxonomy. The asteroid spectra are compared with the meteorite spectra from the Relab database. Mineralogical models were applied to determine their surface composition. All the spectral analysis is made in the context of the already published physical data. Five of the objects studied in this paper present spectral characteristics similar to the S taxonomic complex. The spectra of ordinary chondrites (spanning H, L, and LL subtypes) are the best matches for these asteroid spectra. {\bf The asteroid} (269690) 1996 RG3 presents a flat featureless spectrum which could be associated to a primitive C-type object. The increased reflectance above 2.1 microns constrains its geometrical albedo to a value around 0.03. While there is an important dynamical grouping among the Taurid Complex asteroids, the spectral data of the largest objects do not support a common cometary origin. Furthermore, there are significant variations between the spectra acquired until now.Comment: Accepted for publication in A&

    Scalar and tensorial topological matter coupled to (2+1)-dimensional gravity:A.Classical theory and global charges

    Full text link
    We consider the coupling of scalar topological matter to (2+1)-dimensional gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor field. We carry out a canonical analysis of the classical theory, investigating its sectors and solutions. We show that the model admits both BTZ-like black-hole solutions and homogeneous/inhomogeneous FRW cosmological solutions.We also investigate the global charges associated with the model and show that the algebra of charges is the extension of the Kac-Moody algebra for the field-rigid gauge charges, and the Virasoro algebrafor the diffeomorphism charges. Finally, we show that the model can be written as a generalized Chern-Simons theory, opening the perspective for its formulation as a generalized higher gauge theory.Comment: 40 page

    Implications of Teleportation for Nonlocality

    Full text link
    Adopting an approach similar to that of Zukowski [Phys. Rev. A 62, 032101 (2000)], we investigate connections between teleportation and nonlocality. We derive a Bell-type inequality pertaining to the teleportation scenario and show that it is violated in the case of teleportation using a perfect singlet. We also investigate teleportation using `Werner states' of the form x P + (1-x) I/4, where P is the projector corresponding to a singlet state and I is the identity. We find that our inequality is violated, implying nonlocality, if x > 1/sqrt(2). In addition, we extend Werner's local hidden variable model to simulation of teleportation with the x = 1/2 Werner state. Thus teleportation using this state does not involve nonlocality even though the fidelity achieved is 3/4 which is greater than the `classical limit' of 2/3. Finally, we comment on a result of Gisin's and offer some philosophical remarks on teleportation and nonlocality generally.Comment: 10 pages, no figures. Title changed to accord with Phys. Rev. A version. A note and an extra reference have been added. Journal reference adde

    Embedded finite-element solver for computation of brushless permanent-magnet motors

    Get PDF
    This paper describes the theory underlying the formulation of a “minimum set” of finite-element solutions to be used in the design and analysis of saturated brushless permanent-magnet motors. The choice of finite-element solutions is described in terms of key points on the flux–MMF diagram. When the diagram has a regular shape, a huge reduction in finite-element analysis is possible with no loss of accuracy. If the loop is irregular, many more solutions are needed. This paper describes an efficient technique in which a finite-element solver is associated with a classical dd– qq-axis circuit model in such a way that the number of finite-element solutions in one electrical half-cycle can be varied between 1 and 360. The finite-element process is used to determine not only the average torque but also the saturated inductances as the rotor rotates

    Quantum entanglement can be simulated without communication

    Full text link
    It has recently been shown that all causal correlations between two parties which output each one bit, a and b, when receiving each one bit, x and y, can be expressed as convex combinations of local correlations (i.e., correlations that can be simulated with local random variables) and non-local correlations of the form a+b=xy mod 2. We show that a single instance of the latter elementary non-local correlation suffices to simulate exactly all possible projective measurements that can be performed on the singlet state of two qubits, with no communication needed at all. This elementary non-local correlation thus defines some unit of non-locality, which we call a nl-bit.Comment: 4 pages RevTex, 3 eps figure

    Four generated, squarefree, monomial ideals

    Full text link
    Let I⊋JI\supsetneq J be two squarefree monomial ideals of a polynomial algebra over a field generated in degree ≄d\geq d, resp. ≄d+1\geq d+1 . Suppose that II is either generated by three monomials of degrees dd and a set of monomials of degrees ≄d+1\geq d+1, or by four special monomials of degrees dd. If the Stanley depth of I/JI/J is ≀d+1\leq d+1 then the usual depth of I/JI/J is ≀d+1\leq d+1 too.Comment: to appear in "Bridging Algebra, Geometry, and Topology", Editors Denis Ibadula, Willem Veys, Springer Proceed. in Math. and Statistics, 96, 201

    Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality

    Full text link
    We present a local-hidden-variable model for positive-operator-valued measurements (an LHVPOV model) on a class of entangled generalized Werner states, thus demonstrating that such measurements do not always violate a Bell-type inequality. We also show that, in general, if the state ρâ€Č\rho' can be obtained from ρ\rho with certainty by local quantum operations without classical communication then an LHVPOV model for the state ρ\rho implies the existence of such a model for ρâ€Č\rho'.Comment: 4 pages, no figures. Title changed to accord with Phys. Rev. A version. Journal reference adde

    Generalized quantum measurements and local realism

    Full text link
    The structure of a local hidden variable model for experiments involving sequences of measurements rigorously is analyzed. Constraints imposed by local realism on the conditional probabilities of the outcomes of such measurement schemes are explicitly derived. The violation of local realism in the case of ``hidden nonlocality'' is illustrated by an operational example.Comment: Revtex, 12 pages; Some modifications of introduction has been made; a note stating that part of results had been obtained earlier by other authors, has been added; one postscript figure available at request from [email protected]

    Sufficient conditions for three-particle entanglement and their tests in recent experiments

    Get PDF
    We point out a loophole problem in some recent experimental claims to produce three-particle entanglement. The problem consists in the question whether mixtures of two-particle entangled states might suffice to explain the experimental data. In an attempt to close this loophole, we review two sufficient conditions that distinguish between N-particle states in which all N particles are entangled to each other and states in which only M particles are entangled (with M<N). It is shown that three recent experiments to obtain three-particle entangled states (Bouwmeester et al., Pan et al., and Rauschenbeutel et al.) do not meet these conditions. We conclude that the question whether these experiments provide confirmation of three-particle entanglement remains unresolved. We also propose modifications of the experiments that would make such confirmation feasible.Comment: 16 page

    Entropy and specific heat for open systems in steady states

    Full text link
    The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.Comment: 4 pages, 7 figure
    • 

    corecore