1,850 research outputs found
Applications of synchrotron x-ray powder diffraction in hydrated cements: high-resolution and high-pressure studies
The main aim of this study is to apply synchrotron radiation techniques for the study of hydrated cement pastes. In particular, the tetracalcium aluminoferrite phase, C4AF in cement nomenclature, is the major iron-containing phase in Ordinary Portland Cement (OPC) and in iron rich belite calcium sulfoaluminate cements.
In a first study, the hydration mechanism of pure tetracalcium aluminoferrite phase with water-to-solid ratio of 1.0 has been investigated by HR-SXRPD (high resolution synchrotron X-ray powder diffraction). C4AF in the presence of water hydrates to form mainly an iron-containing hydrogarnet-type (katoite) phase, C3A0.84F0.16H6, as single crystalline phase. Its crystal structure and stoichiometry were determined by the Rietveld method and the final disagreement factors were RWP=8.1% and RF=4.8% [1]. As the iron content in the product is lower than that in C4AF, it is assumed that part of the iron also goes to an amorphous iron rich gel, like the hydrated alumina-type gel, as hydration proceeds. Further results from the high-resolution study will be discussed.
In a second study, the behavior of pure and iron-containing katoites (C3AH6 and C3A0.84F0.16H6) under pressure have been analyzed by SXRPD using a diamond anvil cell (DAC) and then their bulk moduli were determined. The role of the pressure transmitting medium (PTM) has also been studied. In this case, silicone oil as well as methanol/ethanol mixtures have been used as PTM. Some “new peaks” were detected in the pattern for C3A0.84F0.16H6 as pressure increases, when using ethanol/methanol as PTM. These new peaks were still present at ambient pressure after releasing the applied pressure. They may correspond to crystalline nordstrandite or doyleite from the crystallization of amorphous aluminium hydroxide. The results from the high-pressure study will also be discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Acknowledgments: We thank CELLS-ALBA (Barcelona, Spain) for providing synchrotron beam time. We also thank the financial support by BIA2014-57658-C2-1-R and BIA2014-57658-C2-2-R (FEDER)
Compressibility and phase stability of iron-rich ankerite
ABSTRACT: The structure of the naturally occurring, iron-rich mineral Ca₁․₀₈(₆)Mg₀.₂₄(₂)Fe₀.₆₄(₄)Mn₀.₆₄(₄)(CO₃)₂ ankerite was studied in a joint experimental and computational study. Synchrotron X-ray powder diffraction measurements up to 20 GPa were complemented by density functional theory calculations. The rhombohedral ankerite structure is stable under compression up to 12 GPa. A third-order Birch-Murnaghan equation of state yields V₀ = 328.2(3) ų, bulk modulus B₀ = 89(4) GPa, and its first-pressure derivative B'₀ = 5.3(8)-values which are in good agreement with those obtained in our calculations for an ideal CaFe(CO₃)₂ ankerite composition. At 12 GPa, the iron-rich ankerite structure undergoes a reversible phase transition that could be a consequence of increasingly non-hydrostatic conditions above 10 GPa. The high-pressure phase could not be characterized. DFT calculations were used to explore the relative stability of several potential high-pressure phases (dolomite-II-, dolomite-III- and dolomite-V-type structures), and suggest that the dolomite-V phase is the thermodynamically stable phase above 5 GPa. A novel high-pressure polymorph more stable than the dolomite-III-type phase for ideal CaFe(CO₃)₂ ankerite was also proposed. This high-pressure phase consists of Fe and Ca atoms in sevenfold and ninefold coordination, respectively, while carbonate groups remain in a trigonal planar configuration. This phase could be a candidate structure for dense carbonates in other compositional systems.This research was funded by the Spanish Ministerio de Ciencia, Innovación, y Universidades (MICINN) under the projects MALTA Consolider Ingenio 2010 network MAT2015-71070-REDC and PGC2018-097520-A-I00 (co-financed by EU FEDER funds), and by the Generalitat Valenciana under project PROMETEO/2018/123. D.S.-P. and A.O.R. acknowledge the financial support of the Spanish MINECO for the RyC-2014-15643 and RyC-2016-20301 Ramon y Cajal Grants, respectively. C.P acknowledges the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO project FIS2017-83295-P)
Phase stability of stress-sensitive Ag2CO3 silver carbonate at high pressures and temperature
Silver carbonate (Ag2CO3) is a material currently used for artificial carbon storage. In this work, we report synchrotron X-ray powder diffraction (XRD) experiments under high pressure and high temperature in combination with density-functional theory (DFT) calculations on silver carbonate up to 13.3 GPa. Two pressure-induced phase transitions were observed at room temperature: at 2.9 GPa to a high-pressure (HP1) phase and at 10.5 GPa to a second high-pressure phase (HP2). The facts that a) the HP2 phase can be indexed with the initial P21/m structure, b) our DFT calculations predict the initial structure is stable in the entire pressure range, and c) the HP2 phase is stable under decompression suggest that the intermediate HP1 phase is a product of the appearance of non-hydrostatic stresses in the sample. The observed structural transformations are associated to a high sensitivity of this compound to non-hydrostatic conditions. The compressibility of Ag2CO3 has also been determined, showing the c axis is the most compressible and that the bulk modulus increases quickly with applied pressure. We attribute both observations to the weak nature of the closed-shell Ag–Ag interactions in this material. The behavior of Ag2CO3 under heating at approximately 3 GPa was also studied. No temperature-induced phase transitions were found at this pressure, and the thermal expansion was determined to be relatively high for a carbonate.Authors thank the financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) and the Agencia Estatal de Investigación under projects MALTA Consolider Ingenio 2010 network (RED2018-102612-T) and PGC2021-125518NB-I00 (cofinanced by EU FEDER funds), and from the Generalitat Valenciana under projects CIAICO/2021/241 and MFA/2022/007. A.O.R. acknowledges the financial support of the Spanish MINECO RyC-2016-20301 Ramón y Cajal Grant and the project AYUD/2021/51036 of the Principality of Asturias (cofinanced by EU FEDER funds). Authors also thank the MALTA Consolider supercomputing centre and Compute Canada for computational resources and ALBA-CELLS synchrotron for providing beamtime under experiments 2020084419 and 2021024988. These experiments were performed at the MSPD beamline with the collaboration of ALBA staff
Phase stability and dense polymorph of the BaCa(CO3)2 barytocalcite carbonate
The double carbonate BaCa(CO3)2 holds potential as host compound for carbon in the Earth?s crust and mantle. Here, we report the crystal structure determination of a high-pressure BaCa(CO3)2 phase characterized by single-crystal X-ray diffraction. This phase, named post-barytocalcite, was obtained at 5.7 GPa and can be described by a monoclinic Pm space group. The barytocalcite to post-baritocalcite phase transition involves a significant discontinuous 1.4% decrease of the unit-cell volume, and the increase of the coordination number of 1/4 and 1/2 of the Ba and Ca atoms, respectively. High-pressure powder X-ray diffraction measurements at room- and high-temperatures using synchrotron radiation and DFT calculations yield the thermal expansion of barytocalcite and, together with single-crystal data, the compressibility and anisotropy of both the low- and high-pressure phases. The calculated enthalpy differences between different BaCa(CO3)2 polymorphs confirm that barytocalcite is the thermodynamically stable phase at ambient conditions and that it undergoes the phase transition to the experimentally observed post-barytocalcite phase. The double carbonate is significantly less stable than a mixture of the CaCO3 and BaCO3 end-members above 10 GPa. The experimental observation of the high-pressure phase up to 15 GPa and 300 ºC suggests that the decomposition into its single carbonate components is kinetically hindered.Authors thank the fnancial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) and the Agencia Estatal de Investigación under projects MALTA Consolider Ingenio 2010 network (RED2018-102612-T), PID2019-106383GB-C44, FIS2017-83295-P and PGC2018-097520-A-I00 (cofnanced by EU FEDER funds), and from the Generalitat Valenciana under project PROMETEO/2018/123. A.O.R. acknowledges the fnancial support of the Spanish MINECO RyC-2016-20301 Ramon y Cajal Grant. Authors also thank Dr. Nicolescu and the Mineralogy and Meteoritic Department of the Yale Peabody Museum of Natural History for providing the mineral samples, the MALTA Consolider supercomputing centre and Compute Canada for computational resources, the General Services of Research Support (SEGAI) at La Laguna University and ALBA-CELLS synchrotron for providing beamtime under experiments 2020084419 and 2021024988. Tese experiments were performed at the MSPD beamline with the collaboration of ALBA staf
Structural behavior of minrecordite carbonate mineral upon compression: effect of Mg - Zn chemical substitution in dolomite-type compounds
We report the structural behavior and compressibility of minrecordite, a naturally occurring Zn-rich dolomite mineral, determined using diamond-anvil cell synchrotron X-ray diffraction. Our data show that this rhombohedral CaZn0.52Mg0.48(CO3)2 carbonate exhibits a highly anisotropic behavior, the c axis being 3.3 times more compressible than the a axis. The axial compressibilities and the equation of state are governed by the compression of the [CaO6] and [ZnO6] octahedra, which are the cations in larger proportion in each layer. We observe the existence of a dense polymorph above 13.4(3) GPa using Ne as a pressure-transmitting medium, but the onset pressure of the phase transition decreases with the appearance of deviatoric stresses in nonhydrostatic conditions. Our results suggest that the phase transition observed in minrecordite is strain-induced and that the high-pressure polymorph is intimately related to the CaCO3-II-type structure. A comparison with other dolomite minerals indicates that the transition pressure decreases when the ratio Zn/Mg in the crystal lattice of pure dolomite is larger than 1. Density functional theory (DFT) calculations predict that a distorted CaCO3-II-type structure is energetically more stable than dolomite-type CaZn(CO3)2 above 10 GPa. However, according to our calculations, the most stable structure above this pressure is a dolomite-V-type phase, a polymorph not observed experimentally.The authors thank the financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) and the Agencia Estatal de Investigación under projects MALTA Consolider Ingenio 2010 network (RED2018-102612-T), PID2019-106383GB-C41 and PGC2021-125518NB-I00 (cofinanced by EU FEDER funds), and from the Generalitat Valenciana under projects CIAICO/2021/241, CIPROM/2021/075 and MFA/2022/007 (funded by the European Union-Next Generation EU). A.O.-d.-l.-R. acknowledges the financial support of the Spanish MINECO RyC-2016-20301 Ramón y Cajal Grant
Physical characterization of 2020 AV2, the first known asteroid orbiting inside Venus orbit
The first known asteroid with the orbit inside that of Venus is
2020~AV. This may be the largest member of a new population of small
bodies with the aphelion smaller than 0.718~au, called Vatiras. The surface of
2020~AV is being constantly modified by the high temperature, by the
strong solar wind irradiation that characterizes the innermost region of the
Solar system, and by high-energy micrometeorite impacts. The study of its
physical properties represents an extreme test-case for the science of
near-Earth asteroids. Here, we report spectroscopic observations of
2020~AV in the 0.5-1.5~ wavelength interval. These were performed
with the Nordic Optical Telescope and the William Herschel Telescope. Based on
the obtained spectra, we classify 2020~AV as a Sa-type asteroid. We
estimate the diameter of this Vatira to be km by
considering the average albedo of A-type and S-complex asteroids
(), and the absolute magnitude (H=
mag). The wide spectral band around 1~ shows the signature of an olivine
rich composition. The estimated band centre
corresponds to a ferroan olivine mineralogy similar to that of brachinite
meteorites.Comment: Accepted for publication in MNRAS. 10 pages, 5 figures
Characterisation of the key determinants of Phd antitoxin mediated Doc toxin inactivation in Salmonella
In the search for novel antimicrobial therapeutics, toxin-antitoxin (TA) modules are promising yet underexplored targets for overcoming antibiotic failure. The bacterial toxin Doc has been associated with the persistence of Salmonella in macrophages, enabling its survival upon antibiotic exposure. After developing a novel method to produce the recombinant toxin, we have used antitoxin-mimicking peptides to thoroughly investigate the mechanism by which its cognate antitoxin Phd neutralizes the activity of Doc. We reveal insights into the molecular detail of the Phd–Doc relationship and discriminate antitoxin residues that stabilize the TA complex from those essential for inhibiting the activity of the toxin. Coexpression of Doc and antitoxin peptides in Salmonella was able to counteract the activity of the toxin, confirming our in vitro results with equivalent sequences. Our findings provide key principles for the development of chemical tools to study and therapeutically interrogate this important class of protein–protein interactions
Polymorphism and phase stability of hydrated magnesium carbonate nesquehonite MgCO3·3H2O: negative axial compressibility and thermal expansion in a cementitious material
The P-T phase diagram of the hydrated magnesium carbonate nesquehonite (MgCO3·3H2O) has not been reported in the literature. In this paper, we present a joint experimental and computational study of the phase stability and structural behavior of this cementitious material at high-pressure and high-temperature conditions using in situ single-crystal and synchrotron powder X-ray diffraction measurements in resistive-heated diamond anvil cells plus density functional theory calculations. Our results show that nesquehonite undergoes two pressure-induced phase transitions at 2.4 (HP1) and 4.0 GPa (HP2) at ambient temperature. We have found negative axial compressibility and thermal expansivity values, likely related to the directionality of the hydrogen bonds. The equations of state of the different phases have been determined. All the room-temperature compression effects were reversible. Heating experiments at 0.7 GPa show a first temperature-induced decomposition at 115 °C, probably into magnesite and a MgCO3·4H2O phase.This research was funded by the Spanish Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033) under projects PGC2021-125518NB-I00, PID2021-125927NA-C22, and PID2019-106383GB-C44 (cofinanced by EU FEDER funds) as well as by the Generalitat Valenciana under projects CIAICO/2021/241 and MFA/2022/007 (funded by the European Union─Next Generation EU). A.O.R. thanks the Principality of Asturias (FICYT), project AYUD/2021/51036 cofinanced by EU FEDER
A review of macrophage microRNAs' role in human asthma
There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma
- …