3,962 research outputs found

    Strangeness Production in pp,pA,AA Interactions at SPS Energies.HIJING Approach

    Get PDF
    In this report we have made a systematic study of strangeness production in proton-proton(pp),proton-nucleus(pA) and nucleus- nucleus(AA) collisions at CERN Super Proton Synchroton energies, using   HIJING   MONTE   CARLO   MODEL\,\,\, HIJING\,\,\, MONTE \,\,\,CARLO \,\,\,MODEL \\ (version HIJ.01HIJ.01). Numerical results for mean multiplicities of neutral strange particles ,as well as their ratios to negatives hadrons() for p-p,nucleon-nucleon(N-N),\,\,p-S,\,\,p-Ag,\,\,p-Au('min. bias')collisions and p-Au,\,\,S-S,\,\,S-Ag,\,\,S-Au ('central')collisions are compared to experimental data available from CERN experiments and also with recent theoretical estimations given by others models. Neutral strange particle abundances are quite well described for p-p,N-N and p-A interactions ,but are underpredicted by a factor of two in A-A interactions for Λ,Λˉ,KS0\Lambda,\bar{\Lambda}, K^{0}_{S} in symmetric collisions(S-S,\,\,Pb-Pb)and for Λ,Λˉ  \Lambda,\bar{\Lambda}\,\,in asymmetric ones(S-Ag,\,\,S-Au,\,\,S-W). A qualitative prediction for rapidity, transverse kinetic energy and transverse momenta normalized distributions are performed at 200 GeV/Nucleon in p-S,S-S,S-Ag and S-Au collisions in comparison with recent experimental data. HIJING model predictions for coming experiments at CERN for S-Au, S-W and Pb-Pb interactions are given. The theoretical calculations are estimated in a full phase space.Comment: 33 pages(LATEX),18 figures not included,available in hard copy upon request , Dipartamento di Fisica Padova,report DFPD-94-NP-4

    The human performance impact on oee in the adoption of new production technologies

    Get PDF
    Featured Application This research work proposes a framework for the evaluation of the initial adoption phase of new production technologies and its application to the introduction of a semi-automatic packaging machine in a relevant logistics company. The case study allowed the assessment of the machine ramp-up phase and provided valuable insights for reducing the length of this period by achieving a stable target production output. Moreover, it shows how the framework can be adopted, applied and interpreted for obtaining useful insights. Manufacturing systems in digital and interconnected industrial settings where human worker activity is required represents further potential applications of this paper. The initial adoption phase of new production technologies is the period between the first production run or technology reconfiguration and the achievement of a stable target output. This time frame is generally characterized by productivity unsteadiness, quality performance variability, and unexpected machine failures together with increasing production volumes due to the process setup and instability, which inevitably affects production output. In this context, human performance represents an additional source of variability and process instability that is dependent on the workers' productivity, learning curve and related training activities. Hence, to effectively assess the ramp-up phase of new production technologies, an appropriate evaluation of human performance is required. This paper proposes a comprehensive framework and criteria to perform a consistent assessment of the initial adoption phase of new production technologies by introducing two OEE measurement methodologies that distinguish between human performance, process configuration and technical features of the production technology. The proposed framework is then applied to and validated by a case study concerning the introduction of a semi-automatic packaging machine in a primary multinational company in the logistics industry. This case study shows the difference between the two OEE measures, along with the values interpretation and useful insights for achieving a stable production output

    Planar multilayer circuit quantum electrodynamics

    Full text link
    Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar micro-fabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard micro-fabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two cavity-modes, one transmon-qubit system

    Comment on ``Strangeness enhancement in p+Ap+A and S+A+A interactions at energies near 200 AA GeV"

    Get PDF
    We argue that the recent analysis of strangeness production in nuclear collisions at 200 AA GeV/cc performed by Topor Pop {\it et al.} \cite{To:95} is flawed. The conclusions are based on an erroneous interpretation of the data and the numerical model results. The term ``strangeness enhancement" is used in a misleading way.Comment: 4 pages REVTEX 3.0, no figures; Comment submitted to Physical Review
    • …
    corecore