227 research outputs found

    Shear tests of litesteel beams with web openings

    Get PDF
    This paper presents the details of experimental studies on the shear strength of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB) with web openings. The innovative LSB sections have the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in the building industry. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LSBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore a detailed experimental study involving 26 shear tests was undertaken to investigate the shear behaviour and strength of different LSB sections. Simply supported test specimens of LSBs with an aspect ratio of 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results. Experimental results showed that the current design rules in cold-formed steel structures design codes (AS/NZS 4600) [1] are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear strength of LSBs with web openings based on experimental results from this study

    Finite element analyses of lipped chanel beams with web openings in shear

    Get PDF
    Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Shear behaviour of LCBs with web openings is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations were therefore proposed for the shear strength of LCBs with web openings. This paper presents the details of this numerical study of LCBs with web openings, and the results

    Fire safety of steel wall systems using enhanced plasterboards

    Get PDF
    Fire safety design is important to eliminate the loss of property and lives during fire events. Gypsum plasterboard is widely used as a fire safety material in the building industry all over the world. It contains gypsum (CaSO4.2H2O) and Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Currently plasterboard manufacturers use additives such as vermiculite to overcome shrinkage of gypsum core and glass fibre to bridge shrinkage cracks and enhance the integrity of board during calcination and after the loss of paper facings in fires. Past research has also attempted to reduce the thermal conductivity of plasterboards using fillers. However, no research has been undertaken to enhance the specific heat of plasterboard and the points of dehydration using chemical additives and fillers. Hence detailed experimental studies of powdered samples of plasterboard mixed with chemical additives and fillers in varying proportions were conducted. These tests showed the enhancement of specific heat of plasterboard. Numerical models were also developed to investigate the thermal performance of enhanced plasterboards under standard fire conditions. The results showed that the use of these enhanced plasterboards in steel wall systems can significantly improve their fire performance. This paper presents the details of this research and the results that can be used to enhance the fire safety of steel wall systems commonly used in buildings

    Shear tests of rivet fastened rectangular hollow flange channel beams

    Get PDF
    The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results

    Thermal performance of load bearing cold-formed steel walls under fire conditions using numerical studies

    Get PDF
    Cold–formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper

    New Web Crippling Design Rules for Cold-formed Steel Beams

    Get PDF
    Lipped channel beams (LCBs) and SupaCee sections are commonly used as floor joists and bearers in the construction industry. SupaCee section is one of the coldformed steel members, which is increasingly used in the building construction sector. It is characterized by unique ribbed web and curved lip elements, and is claimed to be more economical with extra strength than the traditional channel sections. These thin-walled LCBs and SupaCee sections are subjected to specific local and global failures, one of them being web crippling. Several experimental and numerical studies have been conducted in the past to study the web crippling behaviour and capacities of different cold-formed steel sections under different concentrated load cases. However, due to the nature of the web crippling phenomenon and many factors influencing the web crippling capacities, capacity predictions given by most of the cold-formed steel design standards are either unconservative or conservative. Hence both experimental and finite element studies were conducted to assess the web crippling behaviour and strengths of LCBs and SupaCee sections under ETF, ITF, EOF and IOF load cases. New equations were proposed to determine the web crippling capacities of LCBs and SupaCee sections based on the results from experiments and finite element analyses. Suitable DSM based web crippling design equations were also developed

    Raman spectroscopic study of the mineral xonotlite Ca6Si6O17(OH)2 - A component of plaster boards

    Get PDF
    The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite

    Ultimate shear strength of litesteel beams

    Get PDF
    This paper presents the details of an investigation on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB).The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. In the present investigation, a series of numerical analyses based on three-dimensional finite element modeling and an experimental study were carried out to investigate the shear behaviour of 10 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this investigation and the results including the final design rules for the shear capacity of LSBs. It also presents new shear strength formulae for lipped channel beams based on the current design equations for shear strength given in AISI (2007) using the same approach used for LSBs

    Design of Rivet Fastened Rectangular Hollow Flange Channel Beams Subject to Local Buckling

    Get PDF
    The innovative, rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new type of cold-formed steel section, proposed as an extension to the widely researched hollow flange beams. The hollow flange beams have garnered much interest in the past due to the sections having capacities more typically associated with hot-rolled steel sections. Various researches have been carried out to investigate the behavior of continuously welded hollow flange beams but little is known on the behavior of RHFCBs. The structural behaviour of the RHFCB is unique compared to other conventional cold-formed steel sections and its moment capacity reduces with rivet spacing. The current cold-formed steel design standards do not provide a calculation method to include the effects of intermittent fastening. In this research an extensive parametric study was conducted using validated finite element models to investigate the section moment capacity of RHFCBs. This paper presents the findings from the parametric study and proposes new design equations for the section moment capacity of RHFCBs in the Direct Strength Method format. The parametric study considers various slenderness regions, section dimensions and rivet spacing. In the new design equations, a reduction factor parameter is included to calculate the section moment capacity of RHFCBs at any rivet spacing up to 200 mm

    The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls

    Get PDF
    Energy production still relies considerably on fossil fuels, and the building sector is a major player in the energy consumption market, mainly for space heating and cooling. Thermal bridges (TBs) in buildings are very relevant for the energy efficiency of buildings and may have an impact on heating energy needs of up to 30%. Given the high thermal conductivity of steel, the relevance of TBs in lightweight steel framed (LSF) components could be even greater. No research was found in the literature for evaluating how important the size and shape of steel studs are on the thermal performance of LSF building elements, which is the main objective of this work. This assessment is performed for the internal partitions and exterior façade of load-bearing LSF walls. The accuracy of the numerical model used in the simulations was verified and validated by comparison experimental measurements. Three reference steel studs were considered, six stud flange lengths and four steel thicknesses were evaluated, and five flange indentation sizes and four indent filling materials were assessed, corresponding to a total of 246 modelled LSF walls. It was concluded that the -value decreases when the flange length and the steel studs’ thickness increases, being that these variations are more significant for bigger flange sizes and for thicker steel studs. Additionally, it was found that a small indentation size (2.5 or 5 mm) is enough to provide a significant -value increase and that it is preferable not to use any flange indentation filling material rather than using a poor performance one (recycled rubber)
    • …
    corecore