

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Keerthan, Poologanathan & Mahendran, Mahen (2013) Thermal performance of load bearing cold-formed steel walls under fire conditions using numerical studies. *Journal of Structural Fire Engineering*.

This file was downloaded from: http://eprints.qut.edu.au/60808/

© Copyright 2013 Multi-Science Publishing Co. Ltd.

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

No.	Configuration	Insulation	Insulation Density (kg/m ³)	Load Ratio	Failure Time (minutes)
1		None	None	0.2	53
2		None	None	0.2	111
3		Glass Fibre (Cavity Insulation)	13.88	0.2	101
4		Rockwool (Cavity Insulation)	100	0.2	107
5		Cellulose Fibre (Cavity Insulation)	105	0.2	110
6		Glass Fibre (External Insulation)	13.88	0.2	118
7		Rockwool (External Insulation)	100	0.2	136*
8		Cellulose Fibre (External Insulation)	105	0.2	124
9		Glass Fibre (Cavity Insulation)	13.88	0.4	108
10		Rockwool (External Insulation)	100	0.4	134

Table 1: Load Bearing Wall Configurations in Kolarkar's [5] and Gunalan et al.'s [18]Fire Tests