5,701 research outputs found

    Microstructure of nanocrystalline diamond powders studied by powder diffractometry

    Get PDF
    High resolution x-ray diffraction peaks of diamond nanosize powders of nominal sizes ranging from 5 to 250 nm were analyzed and provided information on grain structure, average size of crystallites, and concentration of dislocations. Selected samples were heat treated at 1670 K at pressures 2.0 and 5.5 GPa or had surface modified by outgassing, heat treatment at vacuum conditions, and by controlled adsorption of gases. The apparent lattice parameter method was applied to characterize the structure of a shell-core model of nanosize particles. The multiple whole profile fitting provided information on crystallite sizes and density of dislocations. Population of dislocations increased with applied pressure, while strain and interplanar distances in the surface layers decreased. Adsorption of foreign gases on the grain surface modified the structure of the surface layers but did not affect dislocations near the center of the grains

    Nucleosynthetic and Mass-Dependent Molybdenum Isotope Anomalies in Iron Meteorites:Constraints on Solar Nebula Heterogeneities and Parent Body Processes

    Get PDF
    While iron meteorite parent bodies exhibit variable deficits in s-process Mo isotopes, they feature essentially identical stable Mo isotope compositions

    Direct observation of non-local effects in a superconductor

    Full text link
    We have used the technique of low energy muon spin rotation to measure the local magnetic field profile B(z) beneath the surface of a lead film maintained in the Meissner state (z depth from the surface, z <= 200 nm). The data unambiguously show that B(z) clearly deviates from an exponential law and represent the first direct, model independent proof for a non-local response in a superconductor.Comment: 5 pages, 3 figure

    Periodic and Quasi-Periodic Compensation Strategies of Extreme Outages caused by Polarization Mode Dispersion and Amplifier Noise

    Full text link
    Effect of birefringent disorder on the Bit Error Rate (BER) in an optical fiber telecommunication system subject to amplifier noise may lead to extreme outages, related to anomalously large values of BER. We analyze the Probability Distribution Function (PDF) of BER for various strategies of Polarization Mode Dispersion (PMD) compensation. A compensation method is proposed that is capable of more efficient extreme outages suppression, which leads to substantial improvement of the fiber system performance.Comment: 3 pages, 1 figure, Submitted to IEEE Photonics Letter

    Inelastic neutron scattering studies of the quantum frustrated magnet clinoatacamite, γ\gamma-Cu2(OD)3Cl, a proposed valence bond solid (VBS)

    Full text link
    The frustrated magnet clinoatacamite, γ\gamma-Cu2_2(OH)3_3Cl, is attracting a lot of interest after suggestions that at low temperature it forms an exotic quantum state termed a Valence Bond Solid (VBS) made from dimerised Cu2+^{2+} (S=1/2S=1/2) spins.\cite{Lee_clinoatacamite} Key to the arguments surrounding this proposal were suggestions that the kagom\'e planes in the magnetic pyrochlore lattice of clinoatacamite are only weakly coupled, causing the system to behave as a quasi-2-dimensional magnet. This was reasoned from the near 95∘^\circ angles made at the bridging oxygens that mediate exchange between the Cu ions that link the kagom\'e planes. Recent work pointed out that this exchange model is inappropriate for γ\gamma-Cu2_2(OH)3_3Cl, where the oxygen is present as a μ3\mu_3-OH.\cite{Wills_JPC} Further, it used symmetry calculations and neutron powder diffraction to show that the low temperature magnetic structure (T<6T<6 K) was canted and involved significant spin ordering on all the Cu2+^{2+} spins, which is incompatible with the interpretation of simultaneous VBS and N\'eel ordering. Correspondingly, clinoatacamite is best considered a distorted pyrochlore magnet. In this report we show detailed inelastic neutron scattering spectra and revisit the responses of this frustrated quantum magnet.Comment: Proceedings of The International Conference on Highly Frustrated Magnetism 2008 (HFM2008

    Coupling of magnetic and ferroelectric hysteresis by a multi-component magnetic structure in Mn2GeO4

    Full text link
    The olivine compound Mn2GeO4 is shown to feature both a ferroelectric polarization and a ferromagnetic magnetization that are directly coupled and point along the same direction. We show that a spin spiral generates ferroelectricity (FE), and a canted commensurate order leads to weak ferromagnetism (FM). Symmetry suggests that the direct coupling between the FM and FE is mediated by Dzyaloshinskii-Moriya interactions that exist only in the ferroelectric phase, controlling both the sense of the spiral rotation and the canting of the commensurate structure. Our study demonstrates how multi-component magnetic structures found in magnetically-frustrated materials like Mn2GeO4 provide a new route towards functional materials that exhibit coupled FM and FE.Comment: Supplementary material available on request, or at publisher websit

    Greater (V)over dotO(2peak) is correlated with greater skeletal muscle deoxygenation amplitude and hemoglobin concentration within individual muscles during ramp-incremental cycle exercise

    Get PDF
    Citation: Okushima, D., Poole, D. C., Barstow, T. J., Rossiter, H. B., Kondo, N., Bowen, T. S., . . . Koga, S. (2016). Greater (V)over dotO(2peak) is correlated with greater skeletal muscle deoxygenation amplitude and hemoglobin concentration within individual muscles during ramp-incremental cycle exercise. Physiological Reports, 4(23), 12. doi:10.14814/phy2.13065It is axiomatic that greater aerobic fitness ((V)over dotO(2peak)) derives from enhanced perfusive and diffusive O-2 conductances across active muscles. However, it remains unknown how these conductances might be reflected by regional differences in fractional O-2 extraction (i.e., deoxy [Hb+Mb] and tissue O-2 saturation [StO2]) and diffusive O-2 potential (i.e., total[Hb+Mb]) among muscles spatially heterogeneous in blood flow, fiber type, and recruitment (vastus lateralis, VL; rectus femoris, RF). Using quantitative time-resolved near-infrared spectroscopy during ramp cycling in 24 young participants ((V)over dotO(2peak) range: similar to 37.4-66.4 mL kg(-1) min(-1)), we tested the hypotheses that (1) deoxy [Hb+Mb] and total[Hb+Mb] at (V)over dotO(2peak) would be positively correlated with (V)over dotO(2peak) in both VL and RF muscles; (2) the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) during submaximal exercise would not differ among subjects differing in (V)over dotO(2peak). Peak deoxy [Hb+Mb] and StO2 correlated with (V)over dotO(2peak) for both VL (r = 0.44 and -0.51) and RF (r = 0.49 and -0.49), whereas for total[Hb+Mb] this was true only for RF (r = 0.45). Baseline deoxy[Hb+Mb] and StO2 correlated with (V)over dotO(2peak) only for RF (r = -0.50 and 0.54). In addition, the deoxy[Hb+Mb] slopes were not affected by aerobic fitness. In conclusion, while the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) did not differ between fitness groups the capacity to deoxygenate [Hb+Mb] (index of maximal fractional O-2 extraction) correlated significantly with (V)over dotO(2peak) in both RF and VL muscles. However, only in the RF did total [Hb+Mb] (index of diffusive O-2 potential) relate to fitness

    Photometric Calibration of the Swift Ultraviolet/Optical Telescope

    Full text link
    We present the photometric calibration of the Swift UltraViolet/Optical Telescope (UVOT) which includes: optimum photometric and background apertures, effective area curves, colour transformations, conversion factors for count rates to flux, and the photometric zero points (which are accurate to better than 4 per cent) for each of the seven UVOT broadband filters. The calibration was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types. The calibration results include the position dependent uniformity, and instrument response over the 1600-8000A operational range. Because the UVOT is a photon counting instrument, we also discuss the effect of coincidence loss on the calibration results. We provide practical guidelines for using the calibration in UVOT data analysis. The results presented here supersede previous calibration results.Comment: Minor improvements after referees report. Accepted for publication in MNRA

    A rotating cavity for high-field angle-dependent microwave spectroscopy of low-dimensional conductors and magnets

    Full text link
    The cavity perturbation technique is an extremely powerful method for measuring the electrodynamic response of a material in the millimeter- and sub-millimeter spectral range (10 GHz to 1 THz), particularly in the case of high-field/frequency magnetic resonance spectroscopy. However, the application of such techniques within the limited space of a high-field magnet presents significant technical challenges. We describe a 7.62 mm x 7.62 mm (diameter x length) rotating cylindrical cavity which overcomes these problems.Comment: 11 pages including 8 figure
    • …
    corecore