7,627 research outputs found

    When learning spaces become learning homes: applications and implications

    Get PDF

    Airborne lidar observations of Arctic polar stratospheric clouds

    Get PDF
    Polar stratospheric clouds (PSC's) have been detected repeatedly during Arctic and Antarctic winters since 1978/1979 by the SAM II (Stratospheric Aerosol Measurement II) instrument aboard the NIMBUS-7 satellite. PSC's are believed to form when supercooled sulfuric acid droplets freeze, and subsequently grow by deposition of ambient water vapor as the local stratospheric temperature falls below the frost point. In order to study the characteristics of PSC's at higher spatial and temporal resolution than that possible from the satellite observations, aircraft missions were conducted within the Arctic polar night vortex in Jan. 1984 and Jan. 1986 using the NASA Langley Research Center airborne dual polarization ruby lidar system. A synopsis of the 1984 and 1986 PSC observations is presented illustrating short range spatial changes in cloud structure, the variation of backscatter ratio with temperature, and the depolarization characterics of cloud layers. Implications are noted with regard to PSC particle characteristics and the physical process by which the clouds are thougth to form

    Few-electron quantum dots in III-V ternary alloys: role of fluctuations

    Full text link
    We study experimentally the electron transport properties of gated quantum dots formed in InGaAs/InP and InAsP/InP quantum well structures grown by chemical-beam epitaxy. For the case of the InGaAs quantum well, quantum dots form directly underneath narrow gate electrodes due to potential fluctuations. We measure the Coulomb-blockade diamonds in the few-electron regime of a single quantum dot and observe photon-assisted tunneling peaks under microwave irradiation. A singlet-triplet transition at high magnetic field and Coulomb-blockade effects in the quantum Hall regime are also observed. For the InAsP quantum well, an incidental triple quantum dot forms also due to potential fluctuations within a single dot layout. Tunable quadruple points are observed via transport measurements.Comment: 3.3 pages, 3 figures. Added two new subfigures, new references, and improved the tex

    Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well

    Full text link
    Direct electron spin resonance (ESR) on a high mobility two dimensional electron gas in a single AlAs quantum well reveals an electronic gg-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin orbit-interaction and a modulation of the electron wavevector caused by the microwave electric field. This contrasts markedly to conventional ESR that detects through the microwave magnetic field.Comment: 4 pages, 4 figure

    Reducing Polarization Mode Dispersion With Controlled Polarization Rotations

    Get PDF
    One of the fundamental limitations to high bit rate, long distance, telecommunication in optical fibers is Polarization Mode Dispersion (PMD). Here we introduce a conceptually new method to reduce PMD in optical fibers by carrying out controlled rotations of polarization at predetermined locations along the fiber. The distance between these controlled polarization rotations must be less than both the beat length and the mode coupling length of the fiber. This method can also be combined with the method in which the fiber is spun while it drawn. The incidence of imperfections on the efficiency of the method is analysed.Comment: 4 page

    Nonlinear c-axis transport in Bi_2Sr_2CaCu_2O_(8+d) from two-barrier tunneling

    Full text link
    Motivated by the peculiar features observed through intrinsic tunneling spectroscopy of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} mesas in the normal state, we have extended the normal state two-barrier model for the c-axis transport [M. Giura et al., Phys. Rev. B {\bf 68}, 134505 (2003)] to the analysis of dI/dVdI/dV curves. We have found that the purely normal-state model reproduces all the following experimental features: (a) the parabolic VV-dependence of dI/dVdI/dV in the high-TT region (above the conventional pseudogap temperature), (b) the emergence and the nearly voltage-independent position of the "humps" from this parabolic behavior lowering the temperature, and (c) the crossing of the absolute dI/dVdI/dV curves at a characteristic voltage V×V^\times. Our findings indicate that conventional tunneling can be at the origin of most of the uncommon features of the c axis transport in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We have compared our calculations to experimental data taken in severely underdoped and slightly underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} small mesas. We have found good agreement between the data and the calculations, without any shift of the calculated dI/dV on the vertical scale. In particular, in the normal state (above TT^\ast) simple tunneling reproduces the experimental dI/dV quantitatively. Below TT^\ast quantitative discrepancies are limited to a simple rescaling of the voltage in the theoretical curves by a factor \sim2. The need for such modifications remains an open question, that might be connected to a change of the charge of a fraction of the carriers across the pseudogap opening.Comment: 7 pages, 5 figure

    Spectral statistics of the quenched normal modes of a network-forming molecular liquid

    Full text link
    We evaluate the density of states of the quenched normal modes of ST2 water, and their statistical fluctuations, for a range of densities spanning three regimes of behavior of a hydrogen bonded liquid: a lower-density regime of random tetrahedral network formation; in the vicinity of a liquid-liquid critical point; and in a higher-density regime of fragile glass-forming behavior. For all cases we find that the fluctuations around the mean spectral densities obey the predictions of the Gaussian orthogonal ensemble of random matrix theory. We also measure the participation ratio of the normal modes across the entire frequency range, and find behavior consistent with the majority of modes being of an extended nature, rather than localized.Comment: Accepted for publication in The Journal of Chemical Physic

    The 16-day variation in tidal amplitudes at Grahamstown (33.3° S, 26.5° E)

    No full text
    International audienceMeteor wind data at Grahamstown (33.3° S, 26.5° E) have been used to study the short-term (planetary scale) variations of the diurnal and semidiurnal tidal amplitudes at ~ 90 km altitude. Wavelet multi-resolution and spectral techniques reveal that planetary periodicities of ~ 10 and ~ 16 days dominate the wave spectrum in the ~ 2?20-day period range. The quasi-16-day oscillation is thought to be related to similar oscillations in the lower atmosphere. Also, there seems to be a link between the winter/equinox 16-day oscillation in the mean flow and that in the semidiurnal tidal amplitudes. It is thought that this is probably due to either the coupling between the normal mode-mean flow interactions and the gravity wave-tidal interactions, or to direct nonlinear interactions between planetary waves and the tide. On the other hand, a comparison of the mean flow and the diurnal tide does not show evidence of correlation. Possible reasons for this disparity are discussed briefly
    corecore