326 research outputs found

    Capillary filling using Lattice Boltzmann Equations: the case of multi-phase flows

    Full text link
    We present a systematic study of capillary filling for multi-phase flows by using mesoscopic lattice Boltzmann models describing a diffusive interface moving at a given contact angle with respect to the walls. We compare the numerical results at changing the density ratio between liquid and gas phases and the ratio between the typical size of the capillary and the interface width. It is shown that numerical results yield quantitative agreement with the Washburn law when both ratios are large, i.e. as the hydrodynamic limit of a infinitely thin interface is approached. We also show that in the initial stage of the filling process, transient behaviour induced by inertial effects and ``vena contracta'' mechanisms, may induce significant departure from the Washburn law. Both effects are under control in our lattice Boltzmann equation and in good agreement with the phenomenology of capillary filling

    Tumour-induced osteomalacia: 18 months of 2-weekly burosumab treatment

    Get PDF
    Summary: Tumour-induced osteomalacia (TIO) is due to an overproduction of fibroblast growth factor 23 (FGF23) by mesenchymal tumours, causing hypophosphatemia, osteomalacia and muscle weakness. TIO is usually cured by tumour resection, but neoplasms may be unidentifiable and unresectable or the patient may refuse surgery. In these cases, medical treatment with oral phosphate and calcitriol is mandatory, but it is not fully effective and it is associated with low compliance. Burosumab, a human MAB against FGF23 employed to treat X-linked hypophosphatemia (XLH), has recently been approved for TIO in the USA. Maximum burosumab dose in XLH is 90 mg administered for 2 weeks; there are no data on clinical efficacy and safety of this dose in TIO. We reported the case of a 73 years old male with multiple non-traumatic fractures, low bone mineral density, pain and reduced independence of activities of daily living. Biochemical evaluation showed hypophosphatemia, high alkaline phosphatase (ALP) and C-terminal telopeptide (CTX) and normal albumin-corrected total calcium and parathyroid hormone. Tubular phosphate reabsorption was low (80%), whereas C-terminal tail of FGF23 (cFGF23) was elevated. A 68Ga-DOTATOC PET was performed, identifying a lesion in the first left rib. The patient refused surgery; therefore, burosumab therapy was started. After 18 months of treatment (maximum dose: 60 mg administered for 2 weeks), plasma phosphate normalized and ALP levels improved (138 U/L). Patient clinical symptoms as well as pain severity and fatigue improved. Neither adverse events nor tumour progression was reported during follow-up except for a painless fracture of the second right rib. Learning points: Our case shows efficacy and safety of burosumab treatment administered every 2 weeks in a tumour-induced osteomalacia (TIO) patient. After 18 months of treatment at a maximum dose of 60 mg every 2 weeks, we found plasma phosphate normalization and ALP reduction as well as improvement in clinical symptoms and fatigue. Neither adverse events nor tumour progression was reported during follow-up, except for a painless fracture of the second right rib

    Effects of Orthogonal Rotating Electric Fields on Electrospinning Process

    Full text link
    Electrospinning is a nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers with nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of a better control on the morphology of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30%30 \% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres. Applications can be envisaged in the fields of nanophotonic components as well as for designing new and improved filtration materials.Comment: 22 pages, 8 figure

    miR-29b and miR-198 overexpression in CD8<sup>+</sup> T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction

    Get PDF
    Background: Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyze these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells. Methods: We investigated gene expression profiles of tumor-reactive CD8+ T cells obtained from RCC patient and compared with their HLA-matched healthy sibling donors using a microarray approach. In addition, miRNAs analysis was performed in a validation cohort of peripheral blood CD8+ T cells from 25 RCC patients compared to 15 healthy volunteers. Results: We observed that CD8+ T cells from RCC patients expressed reduced levels of anti-apoptotic and proliferation-associated gene products when compared with normal donor T cells both pre- and post-IVS. In particular, JAK3 and MCL-1 were down-regulated in patient CD8+ T cells versus their normal counterparts, likely due to defective suppressor activity of miR-29b and miR-198 in RCC CD8+ T cells. Indeed, specific inhibition of miR-29b or miR-198 in peripheral blood mononuclear cells (PBMCs) isolated from RCC patients, resulted in the up-regulation of JAK3 and MCL-1 proteins and significant improvement of cell survival in vitro. Conclusions: Our results suggest that miR-29b and miR-198 dysregulation in RCC patient CD8+ T cells is associated with dysfunctional immunity and foreshadow the development of miR-targeted therapeutics to correct such T cell defects in vivo

    Combining mathematical modelling with in vitro experiments to predict in vivo drug-eluting stent performance

    Get PDF
    In this study, we developed a predictive model of in vivo stent based drug release and distribution that is capable of providing useful insights into performance. In a combined mathematical modelling and experimental approach, we created two novel sirolimus-eluting stent coatings with quite distinct doses and release kinetics. Using readily measurable in vitro data, we then generated parameterised mathematical models of drug release. These were then used to simulate in vivo drug uptake and retention. Finally, we validated our model predictions against data on drug kinetics and efficacy obtained in a small in vivo evaluation. In agreement with the in vivo experimental results, our mathematical model predicted consistently higher sirolimus content in tissue for the higher dose stents compared with the lower dose stents. High dose stents resulted in statistically significant improvements in three key efficacy measures, providing further evidence of a basic relationship between dose and efficacy within DES. However, our mathematical modelling suggests a more complex relationship is at play, with efficacy being dependent not only on delivering an initial dose of drug sufficient to achieve receptor saturation, but also on the consequent drug release rate being tuned to ensure prolonged saturation. In summary, we have demonstrated that our combined in vitro experimental and mathematical modelling framework may be used to predict in vivo DES performance, opening up the possibility of an in silico approach to optimising the drug release profile and ultimately the effectiveness of the device

    CD40 cross-linking induces migration of renal tumor cell through nuclear factor of activated T cells (NFAT) activation

    Get PDF
    CD40 crosslinking plays an important role in regulating cell migration, adhesion and proliferation in renal cell carcinoma (RCC). CD40/CD40L interaction on RCC cells activates different intracellular pathways but the molecular mechanisms leading to cell scattering are not yet clearly defined. Aim of our study was to investigate the main intracellular pathways activated by CD40 ligation and their specific involvement in RCC cell migration. CD40 ligation increased the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH (2)-terminal kinase (JNK) and p38 MAPK. Furthermore, CD40 crosslinking activated different transcriptional factors on RCC cell lines: AP-1, NFkB and some members of the Nuclear Factor of Activated T cells (NFAT) family. Interestingly, the specific inhibition of NFAT factors by cyclosporine A, completely blocked RCC cell motility induced by CD40 ligation. In tumor tissue, we observed a higher expression of NFAT factors and in particular an increased activation and nuclear migration of NFATc4 on RCC tumor tissues belonging to patients that developed metastases when compared to those who did not. Moreover, CD40-CD40L interaction induced a cytoskeleton reorganization and increased the expression of integrin β1 on RCC cell lines, and this effect was reversed by cyclosporine A and NFAT inhibition. These data suggest that CD40 ligation induces the activation of different intracellular signaling pathways, in particular the NFATs factors, that could represent a potential therapeutic target in the setting of patients with metastatic RCC

    Severe acute respiratory syndrome coronavirus 2 may exploit human transcription factors involved in retinoic acid and interferon-mediated response: a hypothesis supported by an in silico analysis

    Get PDF
    The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19), resulting in acute respiratory disease, is a worldwide emergency. Because recently it has been found that SARS-CoV is dependent on host transcription factors (TF) to express the viral genes, efforts are required to understand the molecular interplay between virus and host response. By bioinformatic analysis, we investigated human TF that can bind the SARS-CoV-2 sequence and can be involved in viral transcription. In particular, we analysed the key role of TF involved in interferon (IFN) response. We found that several TF could be induced by the IFN antiviral response, specifically some induced by IFN-stimulated gene factor 3 (ISGF3) and by unphosphorylated ISGF3, which were found to promote the transcription of several viral open reading frame. Moreover, we found 22 TF binding sites present only in the sequence of virus infecting humans but not bat coronavirus RaTG13. The 22 TF are involved in IFN, retinoic acid signalling and regulation of transcription by RNA polymerase II, thus facilitating its own replication cycle. This mechanism, by competition, may steal the human TF involved in these processes, explaining SARS-CoV-2's disruption of IFN-I signalling in host cells and the mechanism of the SARS retinoic acid depletion syndrome leading to the cytokine storm. We identified three TF binding sites present exclusively in the Brazilian SARS-CoV-2 P.1 variant that may explain the higher severity of the respiratory syndrome. These data shed light on SARS-CoV-2 dependence from the host transcription machinery associated with IFN response and strengthen our knowledge of the virus's transcription and replicative activity, thus paving the way for new targets for drug design and therapeutic approaches

    Endothelial dysfunction and renal fibrosis in endotoxemia-induced oliguric kidney injury: possible role of LPS binding protein

    Get PDF
    The pathophysiology of endotoxemia-induced acute kidney injury (AKI) is characterized by an intense activation of the host immune system and renal resident cells by lipopolysaccharide (LPS) and derived proinflammatory products. However, the occurrence of renal fibrosis in this setting has been poorly investigated. The aim of the present study was to investigate the possible association between endothelial dysfunction and acute development of tissue fibrosis in a swine model of LPS-induced AKI. Moreover, we studied the possible effects of coupled plasma filtration adsorption (CPFA) in this setting
    • …
    corecore