168 research outputs found

    The structure of current layers and degree of field line braiding in coronal loops

    Full text link
    One proposed resolution to the long-standing problem of solar coronal heating involves the buildup of magnetic energy in the corona due to turbulent motions at the photosphere that braid the coronal field, and the subsequent release of this energy via magnetic reconnection. In this paper the ideal relaxation of braided magnetic fields modelling solar coronal loops is followed. A sequence of loops with increasing braid complexity is considered, with the aim of understanding how this complexity influences the development of small scales in the magnetic field, and thus the energy available for heating. It is demonstrated that the ideally accessible force-free equilibrium for these braided fields contains current layers of finite thickness. It is further shown that for any such braided field, if a force-free equilibrium exists then it should contain current layers whose thickness is determined by length scales in the field line mapping. The thickness and intensity of the current layers follow scaling laws, and this allows us to extrapolate beyond the numerically accessible parameter regime and to place an upper bound on the braid complexity possible at coronal plasma parameters. At this threshold level the braided loop contains 102610^{26}--1028ergs10^{28}{\rm ergs} of available free magnetic energy, more than sufficient for a large nanoflare.Comment: To appear in ApJ. 20 pages, 10 figure

    Current sheet formation and nonideal behavior at three-dimensional magnetic null points

    Get PDF
    The nature of the evolution of the magnetic field, and of current sheet formation, at three-dimensional (3D) magnetic null points is investigated. A kinematic example is presented which demonstrates that for certain evolutions of a 3D null (specifically those for which the ratios of the null point eigenvalues are time-dependent) there is no possible choice of boundary conditions which renders the evolution of the field at the null ideal. Resistive MHD simulations are described which demonstrate that such evolutions are generic. A 3D null is subjected to boundary driving by shearing motions, and it is shown that a current sheet localised at the null is formed. The qualitative and quantitative properties of the current sheet are discussed. Accompanying the sheet development is the growth of a localised parallel electric field, one of the signatures of magnetic reconnection. Finally, the relevance of the results to a recent theory of turbulent reconnection is discussed.Comment: to appear in Phys. Plasmas. A version with higher quality figures can be found at http://www.maths.dundee.ac.uk/~dpontin/ In this replacement version, typos have been corrected, and in addition references and some further discussion adde

    On the nature of reconnection at a solar coronal null point above a separatrix dome

    Get PDF
    Three-dimensional magnetic null points are ubiquitous in the solar corona, and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point, whose fan field lines form a dome structure. We demonstrate using analytical and computational models several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in quasi-separatrix layer or slip-running reconnection.Comment: Accepted for publication in the Astrophysical Journa

    Generalised models for torsional spine and fan magnetic reconnection

    Full text link
    Three-dimensional null points are present in abundance in the solar corona, and the same is likely to be true in other astrophysical environments. Recent studies suggest that reconnection at such 3D nulls may play an important role in the coronal dynamics. In this paper the properties of the torsional spine and torsional fan modes of magnetic reconnection at 3D nulls are investigated. New analytical models are developed, which for the first time include a current layer that is spatially localised around the null, extending along either the spine or the fan of the null. These are complemented with numerical simulations. The principal aim is to investigate the effect of varying the degree of asymmetry of the null point magnetic field on the resulting reconnection process - where previous studies always considered a non-generic radially symmetric null. The geometry of the current layers within which torsional spine and torsional fan reconnection occur is found to be strongly dependent on the symmetry of the magnetic field. Torsional spine reconnection still occurs in a narrow tube around the spine, but with elliptical cross-section when the fan eigenvalues are different, and with the short axis of the ellipse being along the strong field direction. The spatiotemporal peak current, and the peak reconnection rate attained, are found not to depend strongly on the degree of asymmetry. For torsional fan reconnection, the reconnection occurs in a planar disk in the fan surface, which is again elliptical when the symmetry of the magnetic field is broken. The short axis of the ellipse is along the weak field direction, with the current being peaked in these weak field regions. The peak current and peak reconnection rate in this case are clearly dependent on the asymmetry, with the peak current increasing but the reconnection rate decreasing as the degree of asymmetry is increased

    On the formation of current sheets in response to the compression or expansion of a potential magnetic field

    Full text link
    The compression or expansion of a magnetic field that is initially potential is considered. It was recently suggested by Janse & Low [2009, ApJ, 690, 1089] that, following the volumetric deformation, the relevant lowest energy state for the magnetic field is another potential magnetic field that in general contains tangential discontinuities (current sheets). Here we examine this scenario directly using a numerical relaxation method that exactly preserves the topology of the magnetic field. It is found that of the magnetic fields discussed by Janse & Low, only those containing magnetic null points develop current singularities during an ideal relaxation, while the magnetic fields without null points relax toward smooth force-free equilibria with finite non-zero current.Comment: Accepted for publication in Ap

    Magnetic field line braiding in the solar atmosphere

    Get PDF
    AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.</jats:p

    Current sheets at three-dimensional magnetic nulls:effect of compressibility

    Get PDF
    The nature of current sheet formation in the vicinity of three-dimensional (3D) magnetic null points is investigated. The particular focus is upon the effect of the compressibility of the plasma on the qualitative and quantitative properties of the current sheet. An initially potential 3D null is subjected to shearing perturbations, as in a previous paper [Pontin et al., Phys. Plasmas, in press (2007)]. It is found that as the incompressible limit is approached, the collapse of the null point is suppressed, and an approximately planar current sheet aligned to the fan plane is present instead. This is the case regardless of whether the spine or fan of the null is sheared. Both the peak current and peak reconnection rate are reduced. The results have a bearing on previous analytical solutions for steady-state reconnection in incompressible plasmas, implying that fan current sheet solutions are dynamically accessible, while spine current sheet solutions are not.Comment: to appear in Physics of Plasmas. This version contains updated figures and references, additional discussion, and typos are fixed. This is the second in a series of papers - the first of which (by the same authors) is located at astro-ph/0701462. A version with higher quality figures can be found at http://www.maths.dundee.ac.uk/~dpontin

    May 12 1997 Cme Event: I. a Simplified Model of the Pre-Eruptive Magnetic Structure

    Full text link
    A simple model of the coronal magnetic field prior to the CME eruption on May 12 1997 is developed. First, the magnetic field is constructed by superimposing a large-scale background field and a localized bipolar field to model the active region (AR) in the current-free approximation. Second, this potential configuration is quasi-statically sheared by photospheric vortex motions applied to two flux concentrations of the AR. Third, the resulting force-free field is then evolved by canceling the photospheric magnetic flux with the help of an appropriate tangential electric field applied to the central part of the AR. To understand the structure of the modeled configuration, we use the field line mapping technique by generalizing it to spherical geometry. It is demonstrated that the initial potential configuration contains a hyperbolic flux tube (HFT) which is a union of two intersecting quasi-separatrix layers. This HFT provides a partition of the closed magnetic flux between the AR and the global solar magnetic field. The vortex motions applied to the AR interlock the field lines in the coronal volume to form additionally two new HFTs pinched into thin current layers. Reconnection in these current layers helps to redistribute the magnetic flux and current within the AR in the flux-cancellation phase. In this phase, a magnetic flux rope is formed together with a bald patch separatrix surface wrapping around the rope. Other important implications of the identified structural features of the modeled configuration are also discussed.Comment: 25 pages, 11 figures, to appear in ApJ 200

    Quantifying the tangling of trajectories using the topological entropy

    Get PDF
    We present a simple method to efficiently compute a lower limit of the topological entropy and its spatial distribution for two-dimensional mappings. These mappings could represent either two-dimensional time-periodic fluid flows or three-dimensional magnetic fields, which are periodic in one direction. This method is based on measuring the length of a material line in the flow. Depending on the nature of the flow, the fluid can be mixed very efficiently which causes the line to stretch. Here we study a method that adaptively increases the resolution at locations along the line where folds lead to high curvature. This reduces the computational cost greatly which allows us to study unprecedented parameter regimes. We demonstrate how this efficient implementation allows the computation of the variation of the finite-time topological entropy in the mapping. This measure quantifies spatial variations of the braiding efficiency, important in many practical applications.Comment: 11 pages, 9 figure

    Braided magnetic fields:equilibria, relaxation and heating

    Get PDF
    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypothesis.Comment: To appear in Plasma Physics and Controlled Fusio
    corecore