168 research outputs found
The structure of current layers and degree of field line braiding in coronal loops
One proposed resolution to the long-standing problem of solar coronal heating
involves the buildup of magnetic energy in the corona due to turbulent motions
at the photosphere that braid the coronal field, and the subsequent release of
this energy via magnetic reconnection. In this paper the ideal relaxation of
braided magnetic fields modelling solar coronal loops is followed. A sequence
of loops with increasing braid complexity is considered, with the aim of
understanding how this complexity influences the development of small scales in
the magnetic field, and thus the energy available for heating. It is
demonstrated that the ideally accessible force-free equilibrium for these
braided fields contains current layers of finite thickness. It is further shown
that for any such braided field, if a force-free equilibrium exists then it
should contain current layers whose thickness is determined by length scales in
the field line mapping. The thickness and intensity of the current layers
follow scaling laws, and this allows us to extrapolate beyond the numerically
accessible parameter regime and to place an upper bound on the braid complexity
possible at coronal plasma parameters. At this threshold level the braided loop
contains -- of available free magnetic energy, more
than sufficient for a large nanoflare.Comment: To appear in ApJ. 20 pages, 10 figure
Current sheet formation and nonideal behavior at three-dimensional magnetic null points
The nature of the evolution of the magnetic field, and of current sheet
formation, at three-dimensional (3D) magnetic null points is investigated. A
kinematic example is presented which demonstrates that for certain evolutions
of a 3D null (specifically those for which the ratios of the null point
eigenvalues are time-dependent) there is no possible choice of boundary
conditions which renders the evolution of the field at the null ideal.
Resistive MHD simulations are described which demonstrate that such evolutions
are generic. A 3D null is subjected to boundary driving by shearing motions,
and it is shown that a current sheet localised at the null is formed. The
qualitative and quantitative properties of the current sheet are discussed.
Accompanying the sheet development is the growth of a localised parallel
electric field, one of the signatures of magnetic reconnection. Finally, the
relevance of the results to a recent theory of turbulent reconnection is
discussed.Comment: to appear in Phys. Plasmas. A version with higher quality figures can
be found at http://www.maths.dundee.ac.uk/~dpontin/ In this replacement
version, typos have been corrected, and in addition references and some
further discussion adde
On the nature of reconnection at a solar coronal null point above a separatrix dome
Three-dimensional magnetic null points are ubiquitous in the solar corona,
and in any generic mixed-polarity magnetic field. We consider magnetic
reconnection at an isolated coronal null point, whose fan field lines form a
dome structure. We demonstrate using analytical and computational models
several features of spine-fan reconnection at such a null, including the fact
that substantial magnetic flux transfer from one region of field line
connectivity to another can occur. The flux transfer occurs across the current
sheet that forms around the null point during spine-fan reconnection, and there
is no separator present. Also, flipping of magnetic field lines takes place in
a manner similar to that observed in quasi-separatrix layer or slip-running
reconnection.Comment: Accepted for publication in the Astrophysical Journa
Generalised models for torsional spine and fan magnetic reconnection
Three-dimensional null points are present in abundance in the solar corona,
and the same is likely to be true in other astrophysical environments. Recent
studies suggest that reconnection at such 3D nulls may play an important role
in the coronal dynamics. In this paper the properties of the torsional spine
and torsional fan modes of magnetic reconnection at 3D nulls are investigated.
New analytical models are developed, which for the first time include a current
layer that is spatially localised around the null, extending along either the
spine or the fan of the null. These are complemented with numerical
simulations. The principal aim is to investigate the effect of varying the
degree of asymmetry of the null point magnetic field on the resulting
reconnection process - where previous studies always considered a non-generic
radially symmetric null. The geometry of the current layers within which
torsional spine and torsional fan reconnection occur is found to be strongly
dependent on the symmetry of the magnetic field. Torsional spine reconnection
still occurs in a narrow tube around the spine, but with elliptical
cross-section when the fan eigenvalues are different, and with the short axis
of the ellipse being along the strong field direction. The spatiotemporal peak
current, and the peak reconnection rate attained, are found not to depend
strongly on the degree of asymmetry. For torsional fan reconnection, the
reconnection occurs in a planar disk in the fan surface, which is again
elliptical when the symmetry of the magnetic field is broken. The short axis of
the ellipse is along the weak field direction, with the current being peaked in
these weak field regions. The peak current and peak reconnection rate in this
case are clearly dependent on the asymmetry, with the peak current increasing
but the reconnection rate decreasing as the degree of asymmetry is increased
On the formation of current sheets in response to the compression or expansion of a potential magnetic field
The compression or expansion of a magnetic field that is initially potential
is considered. It was recently suggested by Janse & Low [2009, ApJ, 690, 1089]
that, following the volumetric deformation, the relevant lowest energy state
for the magnetic field is another potential magnetic field that in general
contains tangential discontinuities (current sheets). Here we examine this
scenario directly using a numerical relaxation method that exactly preserves
the topology of the magnetic field. It is found that of the magnetic fields
discussed by Janse & Low, only those containing magnetic null points develop
current singularities during an ideal relaxation, while the magnetic fields
without null points relax toward smooth force-free equilibria with finite
non-zero current.Comment: Accepted for publication in Ap
Magnetic field line braiding in the solar atmosphere
AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.</jats:p
Current sheets at three-dimensional magnetic nulls:effect of compressibility
The nature of current sheet formation in the vicinity of three-dimensional
(3D) magnetic null points is investigated. The particular focus is upon the
effect of the compressibility of the plasma on the qualitative and quantitative
properties of the current sheet. An initially potential 3D null is subjected to
shearing perturbations, as in a previous paper [Pontin et al., Phys. Plasmas,
in press (2007)]. It is found that as the incompressible limit is approached,
the collapse of the null point is suppressed, and an approximately planar
current sheet aligned to the fan plane is present instead. This is the case
regardless of whether the spine or fan of the null is sheared. Both the peak
current and peak reconnection rate are reduced. The results have a bearing on
previous analytical solutions for steady-state reconnection in incompressible
plasmas, implying that fan current sheet solutions are dynamically accessible,
while spine current sheet solutions are not.Comment: to appear in Physics of Plasmas. This version contains updated
figures and references, additional discussion, and typos are fixed. This is
the second in a series of papers - the first of which (by the same authors)
is located at astro-ph/0701462. A version with higher quality figures can be
found at http://www.maths.dundee.ac.uk/~dpontin
May 12 1997 Cme Event: I. a Simplified Model of the Pre-Eruptive Magnetic Structure
A simple model of the coronal magnetic field prior to the CME eruption on May
12 1997 is developed. First, the magnetic field is constructed by superimposing
a large-scale background field and a localized bipolar field to model the
active region (AR) in the current-free approximation. Second, this potential
configuration is quasi-statically sheared by photospheric vortex motions
applied to two flux concentrations of the AR. Third, the resulting force-free
field is then evolved by canceling the photospheric magnetic flux with the help
of an appropriate tangential electric field applied to the central part of the
AR.
To understand the structure of the modeled configuration, we use the field
line mapping technique by generalizing it to spherical geometry. It is
demonstrated that the initial potential configuration contains a hyperbolic
flux tube (HFT) which is a union of two intersecting quasi-separatrix layers.
This HFT provides a partition of the closed magnetic flux between the AR and
the global solar magnetic field. The vortex motions applied to the AR interlock
the field lines in the coronal volume to form additionally two new HFTs pinched
into thin current layers. Reconnection in these current layers helps to
redistribute the magnetic flux and current within the AR in the
flux-cancellation phase. In this phase, a magnetic flux rope is formed together
with a bald patch separatrix surface wrapping around the rope. Other important
implications of the identified structural features of the modeled configuration
are also discussed.Comment: 25 pages, 11 figures, to appear in ApJ 200
Quantifying the tangling of trajectories using the topological entropy
We present a simple method to efficiently compute a lower limit of the
topological entropy and its spatial distribution for two-dimensional mappings.
These mappings could represent either two-dimensional time-periodic fluid flows
or three-dimensional magnetic fields, which are periodic in one direction. This
method is based on measuring the length of a material line in the flow.
Depending on the nature of the flow, the fluid can be mixed very efficiently
which causes the line to stretch. Here we study a method that adaptively
increases the resolution at locations along the line where folds lead to high
curvature. This reduces the computational cost greatly which allows us to study
unprecedented parameter regimes. We demonstrate how this efficient
implementation allows the computation of the variation of the finite-time
topological entropy in the mapping. This measure quantifies spatial variations
of the braiding efficiency, important in many practical applications.Comment: 11 pages, 9 figure
Braided magnetic fields:equilibria, relaxation and heating
We examine the dynamics of magnetic flux tubes containing non-trivial field
line braiding (or linkage), using mathematical and computational modelling, in
the context of testable predictions for the laboratory and their significance
for solar coronal heating. We investigate the existence of braided force-free
equilibria, and demonstrate that for a field anchored at perfectly-conducting
plates, these equilibria exist and contain current sheets whose thickness
scales inversely with the braid complexity - as measured for example by the
topological entropy. By contrast, for a periodic domain braided exact
equilibria typically do not exist, while approximate equilibria contain thin
current sheets. In the presence of resistivity, reconnection is triggered at
the current sheets and a turbulent relaxation ensues. We finish by discussing
the properties of the turbulent relaxation and the existence of constraints
that may mean that the final state is not the linear force-free field predicted
by Taylor's hypothesis.Comment: To appear in Plasma Physics and Controlled Fusio
- …
