The compression or expansion of a magnetic field that is initially potential
is considered. It was recently suggested by Janse & Low [2009, ApJ, 690, 1089]
that, following the volumetric deformation, the relevant lowest energy state
for the magnetic field is another potential magnetic field that in general
contains tangential discontinuities (current sheets). Here we examine this
scenario directly using a numerical relaxation method that exactly preserves
the topology of the magnetic field. It is found that of the magnetic fields
discussed by Janse & Low, only those containing magnetic null points develop
current singularities during an ideal relaxation, while the magnetic fields
without null points relax toward smooth force-free equilibria with finite
non-zero current.Comment: Accepted for publication in Ap