32 research outputs found
Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)
Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as a mechanistic and causal link between process and pattern is often lacking, and evolutionary processes and trophic interactions are ignored. Here, we revisit the current knowledge on community assembly across scales and, in line with several reviews that have outlined challenges associated with current inference techniques, we identify a discrepancy between the current paradigm of eco-evolutionary community assembly and current inference techniques that focus mainly on competition and habitat filtering. We argue that trait-based dynamic eco-evolutionary models in combination with recently developed model fitting and model evaluation techniques can provide avenues for more accurate, reliable, and inclusive inference. To exemplify, we implement a trait-based, spatially explicit eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources. Through a case study on inference of prey and predator niche width in an eco-evolutionary context, we demonstrate how inclusive and mechanistic approachesâeco-evolutionary modelling and Approximate Bayesian Computation (ABC)âcan enable inference of assembly processes that have been largely neglected by traditional techniques despite the ubiquity of such processes. Much literature points to the limitations of current inference techniques, but concrete solutions to such limitations are few. Many of the challenges associated with novel inference techniques are, however, already to some extent resolved in other fields and thus ready to be put into action in a more formal way for inferring processes of community assembly from signals in various data sources
Phylogenetic Analysis Suggests That Habitat Filtering Is Structuring Marine Bacterial Communities Across the Globe
The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by âhabitat filteringâ, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes
The ecological forecast horizon, and examples of its uses and determinants
Forecasts of ecological dynamics in changing environments are increasingly important, and are available for a plethora of variables, such as species abundance and distribution, community structure and ecosystem processes. There is, however, a general absence of knowledge about how far into the future, or other dimensions (space, temperature, phylogenetic distance), useful ecological forecasts can be made, and about how features of ecological systems relate to these distances. The ecological forecast horizon is the dimensional distance for which useful forecasts can be made. Five case studies illustrate the influence of various sources of uncertainty (e.g. parameter uncertainty, environmental variation, demographic stochasticity and evolution), level of ecological organisation (e.g. population or community), and organismal properties (e.g. body size or number of trophic links) on temporal, spatial and phylogenetic forecast horizons. Insights from these case studies demonstrate that the ecological forecast horizon is a flexible and powerful tool for researching and communicating ecological predictability. It also has potential for motivating and guiding agenda setting for ecological forecasting research and development
The Paradox of Predictability Provides a Bridge Between Micro- and Macroevolution
The relationship between the evolutionary dynamics observed in contemporary populations (microevolution) and evolution on timescales of millions of years (macroevolution) has been a topic of considerable debate. Historically, this debate centers on inconsistencies between microevolutionary processes and macroevolutionary patterns. Here, we characterize a striking exception: emerging evidence indicates that standing variation in contemporary populations and macroevolutionary rates of phenotypic divergence are often positively correlated. This apparent consistency between micro- and macroevolution is paradoxical because it contradicts our previous understanding of phenotypic evolution and is so far unexplained. Here, we explore the prospects for bridging evolutionary timescales through an examination of this "paradox of predictability." We begin by explaining why the divergence-variance correlation is a paradox, followed by data analysis to show that the correlation is a general phenomenon across a broad range of temporal scales, from a few generations to tens of millions of years. Then we review complementary approaches from quantitative-genetics, comparative morphology, evo-devo, and paleontology to argue that they can help to address the paradox from the shared vantage point of recent work on evolvability. In conclusion, we recommend a methodological orientation that combines different kinds of short-term and long-term data using multiple analytical frameworks in an interdisciplinary research program. Such a program will increase our general understanding about how evolution works within and across timescales
Biodiversity increases and decreases ecosystem stability
International audienc
The Ecological Forecast Horizon, and examples of its uses and determinants
Forecasts of how ecological systems respond to environmental change are increasingly important. Sufficiently inaccurate forecasts will be of little use, however. For example, weather forecasts are for about one week into the future; after that they are too unreliable to be useful (i.e., the forecast horizon is about one week). There is a general absence of knowledge about how far into the future (or other dimensions, e.g., space, temperature, phylogenetic distance) useful ecological forecasts can be made, in part due to lack of appreciation of the value of ecological forecast horizons. The ecological forecast horizon is the distance into the future (or other dimension) for which useful forecasts can be made. Five case studies illustrate the influence of various sources of uncertainty (e.g., parameter uncertainty, environmental and demographic stochasticity, evolution), level of ecological organisation (e.g., population or community), organismal properties (e.g., body size or number of trophic links) on temporal, spatial and phylogenetic forecast horizons. We propose that the ecological forecast horizon is a flexible and powerful tool for researching and communicating ecological predictability, and for motivating and guiding agenda setting for ecological forecasting research and development