2,336 research outputs found

    Silicon surface with giant spin-splitting

    Full text link
    We demonstrate the induction of a giant Rashba-type spin-splitting on a semiconducting substrate by means of a Bi trimer adlayer on a Si(111) wafer. The in-plane inversion symmetry is broken so that the in-plane potential gradient induces a giant spin-splitting with a Rashba energy of about 140 meV, which is more than an order of magnitude larger than what has previously been reported for any semiconductor heterostructure. The separation of the electronic states is larger than their lifetime broadening, which has been directly observed with angular resolved photoemission spectroscopy. The experimental results are confirmed by relativistic first-principles calculations. We envision important implications for basic phenomena as well as for the semiconductor based technology

    Micromechanical High-doses Radiation Sensor with Bossed Membrane and Interferometry Optical Read-out

    Get PDF
    AbstractThe silicon-glass MEMS high-doses radiation sensor with in situ detection, so far not possible in the field of detection of doses above 10 kGy, has been presented. The sensor consists of a chamber filled with the high density polyethylene (HDPE) and a silicon bossed membrane. The radiolysis product of HDPE increases the pressure inside the chamber causing the deflection of the membrane, which is proportional to the pressure, thus to radiation dose. The sensor has been irradiated with high energy electron beam and shows good detectability for 10-40 kGy. The deflection of the membrane has been detected by optical interferometer

    Hamiltonian Noether theorem for gauge systems and two time physics

    Full text link
    The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al. model and, with special emphasis, to two time physics.Comment: 20 pages, Latex, references added, the "massless" sense of (87) is clarifie

    Electromagnetic waves in NUT space: Solutions to the Maxwell equations

    Full text link
    In this paper, using the Newman-Penrose formalism, we find the Maxwell equations in NUT space and after separation into angular and radial components solve them analytically. All the angular equations are solved in terms of Jaccobi polynomials. The radial equations are transformed into Hypergeometric and Heun's equations with the right hand sides including terms of different order in the frequency of the perturbation which allow solutions in the expansion of this parameter.Comment: 19 pages, Revtex format, Minor changes including an extention of the discussion and typos correction, (Extended version of the article presented to the GR16 conference, July 15-21 2001, Durban, South Africa

    Quantum States of Topologically Massive Electrodynamics and Gravity

    Get PDF
    The free quantum states of topologically massive electrodynamics and gravity in 2+1 dimensions, are explicitly found. It is shown that in both theories the states are described by infrared-regular polarization tensors containing a regularization phase which depends on the spin. This is done by explicitly realizing the quantum algebra on a functional Hilbert space and by finding the Wightman function to define the scalar product on such a Hilbert space. The physical properties of the states are analyzed defining creation and annihilation operators. For both theories, a canonical and covariant quantization procedure is developed. The higher order derivatives in the gravitational lagrangian are treated by means of a preliminary Dirac procedure. The closure of the Poincar\'e algebra is guaranteed by the infrared-finiteness of the states which is related to the spin of the excitations through the regularization phase. Such a phase may have interesting physical consequences.Comment: 21 page, latex, no figure

    Atom laser dynamics in a tight-waveguide

    Full text link
    We study the transient dynamics that arise during the formation of an atom laser beam in a tight waveguide. During the time evolution the density profile develops a series of wiggles which are related to the diffraction in time phenomenon. The apodization of matter waves, which relies on the use of smooth aperture functions, allows to suppress such oscillations in a time interval, after which there is a revival of the diffraction in time. The revival time scale is directly related to the inverse of the harmonic trap frequency for the atom reservoir.Comment: 6 pages, 5 figures, to be published in the Proceedings of the 395th WE-Heraeus Seminar on "Time Dependent Phenomena in Quantum Mechanics ", organized by T. Kramer and M. Kleber (Blaubeuren, Germany, September 2007

    El yacimiento de Mas Castellar de Pontós y el comercio del cereal ibérico en la zona de Emporion y Rhode (SS.IV-II a.C.)

    Get PDF
    This paper deals with somne recents findings which suggest that in the last phase (siglos IV-II a. C.) the site of Mas Castella (Pontós) was a sanctuary dedicated to Deméter and Kore which was surrounder by a field of silos. The findings of a cultual structure with an Hellenistic altar made of Penthelic marble and of a big votive deposit within a silo point to this possibility. This deposit allowed us to understand the ritual meaning of some other tindings within si los which were made in former excavations.Se presentan nuevos hallazgos en el yacimiento que permiten identificar en su última fase (siglos IV-II a. C.) un posible santuario de Deméter y Core rodeado de un campo de silos. Apuntan en este sentido el hallazgo de una estructura de culto incluyendo un altar helenístico en mármol pentélico y un gran depósito votivo localizado en el interior de un silo. Este depósito permite identificar el significado ritual de otros hallazgos anteriores en el interior de silos

    The giant planet orbiting the cataclysmic binary DP Leonis

    Full text link
    Planets orbiting post-common envelope binaries provide fundamental information on planet formation and evolution, especially for the yet nearly unexplored class of circumbinary planets. We searched for such planets in \odp, an eclipsing short-period binary, which shows long-term eclipse-time variations. Using published, reanalysed, and new mid-eclipse times of the white dwarf in DP\,Leo, obtained between 1979 and 2010, we find agreement with the light-travel-time effect produced by a third body in an elliptical orbit. In particular, the measured binary period in 2009/2010 and the implied radial velocity coincide with the values predicted for the motion of the binary and the third body around the common center of mass. The orbital period, semi-major axis, and eccentricity of the third body are P_c = 28.0 +/- 2.0 yrs, a_c = 8.2 +/- 0.4 AU, and e_c = 0.39 +/- 0.13. Its mass of M_c sin(i_c) = 6.1 +/- 0.5 M_J qualifies it as a giant planet. It formed either as a first generation object in a protoplanetary disk around the original binary or as a second generation object in a disk formed in the common envelope shed by the progenitor of the white dwarf. Even a third generation origin in matter lost from the present accreting binary can not be entirely excluded. We searched for, but found no evidence for a fourth body.Comment: Accepted by A&
    • …
    corecore