We demonstrate the induction of a giant Rashba-type spin-splitting on a
semiconducting substrate by means of a Bi trimer adlayer on a Si(111) wafer.
The in-plane inversion symmetry is broken so that the in-plane potential
gradient induces a giant spin-splitting with a Rashba energy of about 140 meV,
which is more than an order of magnitude larger than what has previously been
reported for any semiconductor heterostructure. The separation of the
electronic states is larger than their lifetime broadening, which has been
directly observed with angular resolved photoemission spectroscopy. The
experimental results are confirmed by relativistic first-principles
calculations. We envision important implications for basic phenomena as well as
for the semiconductor based technology