7,188 research outputs found
Adiabaticity in a time dependent trap: a passage near continuum threshold
We consider a time dependent trap externally manipulated in such a way that
one of its bound states is brought up towards the continuum threshold, and then
down again. We evaluate the probability for a particle, initially in
a bound state of the trap, to continue in it at the end of the passage. We use
the Sturmian representation, whereby the problem is reduced to evaluating the
reflecting coefficient of an absorbing potential. In the slow passage limit,
goes to for a state turning before reaching the continuum
threshold, and vanishes if the bound state crosses into the continuum. For a
slowly moving state just "touching" the threshold tends to a
universal value of about , for a broad class of potentials. In the rapid
passage limit, depends on the choice of the potential. Various types
of trapping potentials are considered, with an analytical solution obtained in
the special case of a zero-range well.Comment: 11 pages, 10 figure
Industrial GaInP/GaAs Power HBT MMIC Process
UMS has developed an industrial power HBT process especially dedicated to power MMICs in the 10GHz frequency range. The process has been qualified and meets the very demanding specifications required for X-Band high power amplifiers. Aside from the obvious RF performances, this includes the demonstration of the necessary stability and reproducibility of the process, associated with state-of-art reliability. It is important to note that the later has been achieved without affecting the high frequency capability of the devices, and demonstrated directly on high power transistors. Thanks to its intrinsic qualities this process can naturally also be used for other applications, like low phase noise voltage controlled oscillators, and power amplifiers at lower frequencies (for mobile phones for instance)
High resolution probe of coherence in low-energy charge exchange collisions with oriented targets
The trapping lasers of a magneto-optical trap (MOT) are used to bring Rb
atoms into well defined oriented states. Coupled to recoil-ion momentum
spectroscopy (RIMS), this yields a unique MOTRIMS setup which is able to probe
scattering dynamics, including their coherence features, with unprecedented
resolution. This technique is applied to the low-energy charge exchange
processes Na+Rb() Na()+Rb. The
measurements reveal detailed features of the collisional interaction which are
employed to improve the theoretical description. All of this enables to gauge
the reliability of intuitive pictures predicting the most likely capture
transitions
Hall drift in the crust of neutron stars - necessary for radio pulsar activity?
The radio pulsar models based on the existence of an inner accelerating gap
located above the polar cap rely on the existence of a small scale, strong
surface magnetic field . This field exceeds the dipolar field ,
responsible for the braking of the pulsar rotation, by at least one order of
magnitude. Neither magnetospheric currents nor small scale field components
generated during neutron star's birth can provide such field structures in old
pulsars. While the former are too weak to create G, the ohmic decay time of the latter is much shorter than
years. We suggest that a large amount of magnetic energy is stored in a
toroidal field component that is confined in deeper layers of the crust, where
the ohmic decay time exceeds years. This toroidal field may be created
by various processes acting early in a neutron star's life. The Hall drift is a
non-linear mechanism that, due to the coupling between different components and
scales, may be able to create the demanded strong, small scale, magnetic spots.
Taking into account both realistic crustal microphysics and a minimal cooling
scenario, we show that, in axial symmetry, these field structures are created
on a Hall time scale of - years. These magnetic spots can be
long-lived, thereby fulfilling the pre-conditions for the appearance of the
radio pulsar activity. Such magnetic structures created by the Hall drift are
not static, and dynamical variations on the Hall time scale are expected in the
polar cap region.Comment: 4 pages, 5 figures, contribution to the ERPM conferences, Zielona
Gora, April 201
Remarks on the consistency of minimal deviations from General Relativity
We study the consequences of the modification of the phase space structure of
General Relativity imposed by breaking the full diffeomorphism invariance but
retaining the time foliation preserving diffeomorphisms. We examine the
different sectors in phase space that satisfy the new structure of constraints.
For some sectors we find an infinite tower of constraints. In spite of that, we
also show that these sectors allow for solutions, among them some well known
families of black hole and cosmologies which fulfill all the constraints. We
raise some physical concerns on the consequences of an absolute Galilean time,
on the thermodynamical pathologies of such models and on their unusual vacuum
structure.Comment: latex 28 pages, 1 figure. Added comments and a reference. Text
improved
Effect of lattice mismatch-induced strains on coupled diffusive and displacive phase transformations
Materials which can undergo slow diffusive transformations as well as fast
displacive transformations are studied using the phase-field method. The model
captures the essential features of the time-temperature-transformation (TTT)
diagrams, continuous cooling transformation (CCT) diagrams, and microstructure
formation of these alloys. In some materials systems there can exist an
intrinsic volume change associated with these transformations. We show that
these coherency strains can stabilize mixed microstructures (such as retained
austenite-martensite and pearlite-martensite mixtures) by an interplay between
diffusive and displacive mechanisms, which can alter TTT and CCT diagrams.
Depending on the conditions there can be competitive or cooperative nucleation
of the two kinds of phases. The model also shows that small differences in
volume changes can have noticeable effects on the early stages of martensite
formation and on the resulting microstructures.
-- Long version of cond-mat/0605577
-- Keywords: Ginzburg-Landau, martensite, pearlite, spinodal decomposition,
shape memory, microstructures, TTT diagram, CCT diagram, elastic compatibilityComment: 10 pages, 13 figures, long version of cond-mat/0605577. Physical
Review B, to appear in volume 75 (2007
- …
