1,187 research outputs found

    Isolated familial pheochromocytoma as a variant of von Hippel-Lindau disease.

    Get PDF
    Inherited pheochromocytomas are often part of familial syndromes, especially multiple endocrine neoplasia type 2 (MEN 2), retinal cerebellar hemangioblastomatosis [von Hippel-Lindau (vHL) disease] or neurofibromatosis type 1. It is not clear whether isolated familial pheochromocytoma exists as a separate clinical entity. In a family with pheochromocytomas in three generations and with at least seven affected members, we investigated by clinical and genetic analyses the presence or absence of associated conditions. The clinical investigations included ophthalmological and radiological studies for von Hippel-Lindau disease (magnetic resonance imaging of the brain, computed tomography of the abdomen, and direct ophthalmoscopy after mydriasis) and annual calcitonin stimulation tests for C cell disease in five members who agreed to regular follow-up. Besides the pheochromocytomas (so far, these have been multiple in five of seven individuals) no definite second associated condition was found. Genetic analysis did not identify any MEN 2-specific RET protooncogene point mutations (which are present in 97% of MEN 2a families). However, despite the complete absence of other clinical manifestations of the vHL disease (besides pheochromocytomas), a previously undescribed germline missense mutation in the vHL tumor suppressor gene was found (C775G transversion with a predicted substitution of a leucine by a valine at codon 259 in the putative vHL protein). We conclude that in this family the sole occurrence of pheochromocytoma is a variant of vHL disease

    Review of Potential Wind Tunnel Balance Technologies

    Get PDF
    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript

    Steric constraints in model proteins

    Full text link
    A simple lattice model for proteins that allows for distinct sizes of the amino acids is presented. The model is found to lead to a significant number of conformations that are the unique ground state of one or more sequences or encodable. Furthermore, several of the encodable structures are highly designable and are the non-degenerate ground state of several sequences. Even though the native state conformations are typically compact, not all compact conformations are encodable. The incorporation of the hydrophobic and polar nature of amino acids further enhances the attractive features of the model.Comment: RevTex, 5 pages, 3 postscript figure

    Stable Real-Time Interaction Between Virtual Humans and Real Scenes

    Get PDF
    We present an augmented reality system that relies on purely passive techniques to solve the real-time registration problem. It can run on a portable PC and does not require engineering of the environment, for example by adding markers. To achieve this result, we have integrated robust computer vision techniques into a powerful VR framework. The resulting AR system allows us to produce complex rendering and animation of virtual human characters, and to blend them into the real world. The system tracks the 3D camera position by means of a natural features tracker, which, given a rough CAD model, can deal with complex 3D objects. The tracking method can handle both large camera displacements and aspect changes. We will show that our system works in the cluttered environment of a real industrial facility and can, therefore, be used to enhance manufacturing and industrial processe

    Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films: Experiments and Theory

    Get PDF
    Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest degree of order is observed in the case of macrocycle monolayers and the lowest in the case of rotaxane multilayers. The second harmonic generation activity is interpreted in terms of electric field induced second harmonic (EFISH) generation where the electric field is created by the substrate silver atoms. The measured second order nonlinear optical susceptibility for a rotaxane thin film is compared with that obtained by considering only EFISH contribution to SHG intensity. The electric field on the surface of a silver layer is calculated by using the Delphi4 program for structures obtained with TINKER molecular mechanics/dynamics simulations. An excellent agreement is observed between the calculated and the measured SHG susceptibilities.

    An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering

    Get PDF
    The unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers. By exploiting end-functionalized oligoEDOT constructs as macroinitiators for the polymerization of poly(caprolactone), a block co-polymer is produced that is electroactive, processable, and bio-compatible. By combining these properties, electroactive fibrous mats are produced for neuronal culture via solution electrospinning and melt electrospinning writing. Importantly, it is also shown that neurite length and branching of neural stem cells can be enhanced on the materials under electrical stimulation, demonstrating the promise of these scaffolds for neural tissue engineering
    • 

    corecore