1,654 research outputs found

    Laser angle sensor development

    Get PDF
    Electrical and optical parameters were developed for a two axis (pitch/roll) laser angle sensor. The laser source and detector were mounted in the plenum above the model. Two axis optical distortion measurements of flow characteristics in a 0.3 transonic cryogenic tunnel were made with a shearing interferometer. The measurement results provide a basis for estimating the optical parameters of the laser angle sensor. Experimental and analytical information was generated on model windows to cover the reflector. A two axis breadboard was assembled to evaluate different measurement concepts. The measurement results were used to develop a preliminary design of a laser angle sensor. Schematics and expected performance specifications are included

    Laser angle sensor

    Get PDF
    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures

    Laser angle measurement system

    Get PDF
    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given

    Metal-insulator transition and electroresistance in lanthanum/calcium manganites La_<1-x>Ca_<x>MnO_<3> (x = 0-0.5) from voltage-current-temperature surfaces

    Get PDF
    Of the perovskites, ABX_, a subset of special interest is the family in which the A site is occupied by a lanthanide ion, the B site by a rare earth and X is oxygen, as such materials often exhibit a large change in electrical resistance in a magnetic field, a phenomenon known as "colossal" magnetoresistance (MR). Two additional phenomena in this family have also drawn attention: the metal-insulator transition (MIT) and electroresistance (ER). The MIT is revealed by measuring resistance as a function of temperature, and observing a change in the sign of the gradient. ER - the dependence of the resistance on applied current - is revealed by measuring resistance as a function of applied current. Up until now, the phenomena of MIT and ER have been treated separately. Here we report simultaneous observation of the MIT and ER in the lanthanum/calcium manganites. We accomplish this by measuring voltage-current curves over a wide temperature range (10-300 K) allowing us to build up an experimental voltage surface over current-temperature axes. These data directly lead to resistance surfaces. This approach provides additional insight into the phenomena of electrical transport in the lanthanum/calcium manganites, in particular the close connection of the maximum ER to the occurrence of the MIT in those cases of a paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition.Comment: 15 pages, 12 figure

    Grain Boundary Structures in f.c.c, and b.c.c. Metals and Sites for Segregated Impurities

    Get PDF
    The key features leading to low-energy grain boundaries in metals are discussed by reference to computer-simulated structures and geometrical analysis in terms of atom packing. Low energy is found to be associated with boundary structures consisting of relatively dense packing, and this can in turn be expressed in terms of the space-filling packing of coordination polyhedra. The geometrical method of analysis is shown to be well suited to the identification of interfacial sites for segregated impurities

    Coriolis force in Geophysics: an elementary introduction and examples

    Get PDF
    We show how Geophysics may illustrate and thus improve classical Mechanics lectures concerning the study of Coriolis force effects. We are then interested in atmospheric as well as oceanic phenomena we are familiar with, and are for that reason of pedagogical and practical interest. Our aim is to model them in a very simple way to bring out the physical phenomena that are involved.Comment: Accepted for publication in European Journal of Physic

    Experimental measurement of stress at a four-domain junction in lead zirconate titanate

    Get PDF
    A junction between two lamellar bands of ferroelectric domains in a lead zirconate titanate (PZT) ceramic is analysed using Kikuchi diffraction patterns in the transmission electron microscope. Indexing of the diffraction patterns allowed the determination of the 3D relative orientation of the 4 different domains at the junction and thus the characterisation of the domain boundaries. The local c/a ratio could also be determined from the misorientations at the domain boundaries. Analysis of the data showed that large stresses were concentrated at the junction, and that this is inevitable at such band junctions. Such stress concentrations could act as nuclei for cracking of the ceramic under additional loading in service, perhaps particularly as a consequence of extended electromechanical cycling. Moreover, the stresses would increase with increasing c/a making the issues all the more serious for Ti-rich compositions having larger c/a ratios

    Both Trait and State Mindfulness Predict Lower Aggressiveness via Anger Rumination: a Multilevel Mediation Analysis

    Get PDF
    Trait mindfulness, or the capacity for nonjudgmental, present-centered attention, predicts lower aggression in cross-sectional samples, an effect mediated by reduced anger rumination. Experimental work also implicates state mindfulness (i.e., fluctuations around one's typical mindfulness) in aggression. Despite evidence that both trait and state mindfulness predict lower aggression, their relative impact and their mechanisms remain unclear. Higher trait mindfulness and state increases in mindfulness facets may reduce aggression-related outcomes by (1) limiting the intensity of anger, or (2) limiting rumination on anger experiences. The present study tests two hypotheses: First, that both trait and state mindfulness contribute unique variance to lower aggressiveness, and second, that the impact of both trait and state mindfulness on aggressiveness will be uniquely partially mediated by both anger intensity and anger rumination. 86 participants completed trait measures of mindfulness, anger intensity, and anger rumination, then completed diaries for 35 days assessing mindfulness, anger intensity, anger rumination, anger expression, and self-reported and behavioral aggressiveness. Using multilevel zero-inflated regression, we examined unique contributions of trait and state mindfulness facets to daily anger expression and aggressiveness. We also examined the mediating roles of anger intensity and anger rumination at both trait and state levels. Mindfulness facets predicted anger expression and aggressiveness indirectly through anger rumination after controlling for indirect pathways through anger intensity. Individuals with high or fluctuating aggression may benefit from mindfulness training to reduce both intensity of and rumination on anger

    Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles

    Full text link
    Rosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport coefficients of simple monatomic, equilibrium fluids in specific dimensionless forms makes them approximately single-valued functions of excess entropy. This has predictive value because, while the transport coefficients of dense fluids are difficult to estimate from first principles, excess entropy can often be accurately predicted from liquid-state theory. Here, we use molecular simulations to investigate whether Rosenfeld's observation is a special case of a more general scaling law relating mobility of particles in mixtures to excess entropy. Specifically, we study tracer diffusivities, static structure, and thermodynamic properties of a variety of one- and two-component model fluid systems with either additive or non-additive interactions of the hard-sphere or Gaussian-core form. The results of the simulations demonstrate that the effects of mixture concentration and composition, particle-size asymmetry and additivity, and strength of the interparticle interactions in these fluids are consistent with an empirical scaling law relating the excess entropy to a new dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we introduce here. The dimensionless form of the tracer diffusivity follows from knowledge of the intermolecular potential and the transport / thermodynamic behavior of fluids in the dilute limit. The generalized Rosenfeld scaling requires less information, and provides more accurate predictions, than either Enskog theory or scalings based on the pair-correlation contribution to the excess entropy. As we show, however, it also suffers from some limitations, especially for systems that exhibit significant decoupling of individual component tracer diffusivities.Comment: 15 pages, 10 figure
    corecore