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Abstract 

The key features leading to low-energy grain boun- 
daries in metals are discussed by reference to 
computer-simulated structures and geometrical 
analysis in terms of atom packing. Low energy is found 
to be associated with boundary structures consisting of 
relatively dense packing, and this can in turn be 
expressed in terms of the space-filling packing of 
coordination polyhedra. The geometrical method of 
analysis is shown to be well suited to the identification 
of interfacial sites for segregated impurities. 

Introduction 

The present authors have carried out an investigation 
of coincidence grain boundary structure by computer 
simulation; mainly (100) and (110) tilt boundaries in 
f.c.c. (Smith, Vitek & Pond, 1977; Pond & Vitek, 1977; 
Pond, Smith & Vitek, 1979) and b.c.c, metals (Vitek, 
Smith & Pond, 1979) have been studied. The procedure 
adopted for studying a chosen boundary was to create 
initially an unrelaxed model of that boundary and sub- 
sequently to allow relaxation to a minimum energy 
structure. The relaxation process allowed individual 
atoms to move away from their unrelaxed positions, 
and also rigid body displacement of one grain to occur 
relative to the other. In order to elucidate the charac- 
teristic features of fully relaxed boundary structures in 
f.c.c, metals the method, originally proposed by Frank 
& Kasper (1958) and developed by Bernal (1964), for 
analysing atomic packing in complex structures was 
used. This method of analysis showed that grain 
boundaries in f.c.c, metals contain structural elements 
similar to those found in close-packed crystals and 
other elements closely resembling configurations which 
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occur in simple liquid metals. Atom-packing analysis 
has also been found useful in the study of simulated 
boundary structures in b.c.c, metals. Characteristic 
structural elements also exist in these boundaries but 
are distinct from those found in the boundaries of f.c.c. 
metals. 

The purpose of the present work is to describe the 
method of atom-packing analysis, and to summarize 
the main conclusions reached by its application to 
simulated boundary structures. To illustrate the struc- 
tural differences between boundaries in f.c.c, and b.c.c. 
metals, one simulated boundary in each type of metal is 
analysed in detail. The boundary structures chosen for 
presentation have identical relative orientations of the 
adjacent crystals, viz [110] 38.9 °, and the plane of the 
boundary in both cases is (1 [4), i.e. the two structures 
are 27 -- 9 symmetrical tilt boundaries in f.c.c, and b.c.c. 
metals. In addition, preliminary results concerning the 
identification of sites for impurity atoms segregated to 
boundaries are presented. 

Atom-packing analysis 

Frank & Kasper (1958, 1959) developed an elegant 
geometrical procedure which they used to show that 
complex alloy structures can be represented as pack- 
ings of spheres. This work inspired Bernal (1964) to 
consider the structure of simple liquids in terms of 
close-packing arrangements of identical spheres in 
which crystallization has been frustrated. The ideas 
contained in these works are especially appropriate for 
analysis of grain boundary structures in close-packed 
metals, and this has been recognized by the present 
authors and independently by Ashby, Spaepen & 
Williams (1978). In this section the basic geometrical 
definitions set out by Frank & Kasper (1958) are given, 
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and the way in which the analysis may be extended to 
structures in b.c.c, metals is described. 

It is more convenient to consider the arrangement 
and form of space-filling polyhedra representing close- 
packed spheres than to consider the spheres them- 
selves. Three types of polyhedra are useful: (1) the 
domain of each atom, (2) the coordination polyhedron 
of each atom, and (3) the coordination polyhedron of 
voids at the interstices between spheres. Unambiguous 
definitions of these polyhedra require precise definition 
of neighbouring spheres (as opposed to nearest neigh- 
bours) and coordination number. Moreover, these 
definitions must remain valid when intersphere 
separations are distorted somewhat from equilibrium 
values as is likely to occur in interfacial structures. The 
domain of an atom is the space in which all points are 
nearer to the centre of that atom than that of any other. 
It is a polyhedron, each face of which is the plane equi- 
distant between that atom and a neighbour. Consider 
all planes bisecting lines joining the central atom to all 
other atoms; the innermost polyhedron bounded by 
these planes is the domain of that central atom. Atoms 
which are neighbours must have one face of their 
domains in common. The number of neighbours is 
called the coordination number of the central atom, and 
the set of neighbours its coordination shell. The poly- 
hedron whose edges are the lines joining the centres of 
all the atoms of the coordination shell which are also 
neighbours of each other is called its coordination poly- 
hedron. A coordination polyhedron and domain have a 
dual relationship, each having a vertex corresponding 
to each face of the other. The edges of a void 
coordination polyhedron join the atoms in the coor- 
dination shell of a void as represented by a hypo- 
thetical sphere just filling that void. 

In the analysis of grain boundary structures we have 
found the coordination polyhedra of atoms and voids 
to be particularly useful constructions, and have con- 
sidered domains only in order to establish whether 
atoms are neighbours or not. We now consider the 
form of these polyhedra in f.c.c, and b.c.c, crystals. The 
domain of each atom in a f.c.c, crystal is a rhombic 
dodecahedron and the atomic coordination poly- 
hedron is a cuboctahedron. There are two types of void 
coordination polyhedra, octahedra and tetrahedra, the 
centres of the octahedra are located at domain vertices 
where four edges meet, and the tetrahedra at vertices 
where three edges meet. All edges of both types of void 
coordination polyhedra are ½(110). Domains in b.c.c. 
crystals are truncated octahedra, and atomic coor- 
dination polyhedra are rhombic dodecahedra. There 
are two types of void coordination polyhedra, distorted 
octahedra (four (100) and eight ½(111) edges) and 
distorted tetrahedra (two (100) and four ½(111) 
edges). The distorted octahedra may be regarded as 
four distorted tetrahedra sharing a common (100) 
edge. 

We now consider the likely form of void coor- 
dination polyhedra in close-packed structures other 
than f.c.c, crystals. The densest arrangement of 
identical spheres in a plane is triangulated packing as in 
f.c.c. (111). It follows that we should expect coor- 
dination polyhedra with equilateral triangular faces to 
be ubiquitous in densely packed materials. Three of the 
five Platonic polyhedra (tetrahedra, octahedra and 
icosahedra) are of this type; the importance of the first 
two in f.c.c, crystals has been mentioned already, and 
the third is known to lead to local densities greater than 
that for f.c.c, crystals although such polyhedra alone 
cannot fill space (Wells, 1975). In an icosahedron 
formed by twelve identical spheres, a thirteenth sphere 
with 10% smaller diameter can be accommodated in 
the central void. Triangulated coordination polyhedra 
with coordination 14, 15 and 16 are also known to be 
important in complex alloy structures such as Laves 
phases (Frank & Kasper, 1959). If identical spheres are 
placed at the vertices of a symmetrical pentagonal 
bipyramid and the separation of the spheres along the 
axis is equal to the edge length in the pentagonal ring, 
the faces closely approach equilaterial triangles (Frank 
& Kasper, 1958). This figure is equivalent to five 
congruent tetrahedra with the bipyramid's axis as a 
common edge so that there is no central void unless 
some extension along the axis is present (M. F. Ashby, 
private communication). Further triangulated void 
coordination polyhedra were identified by Bernal 
(1964). In addition to tetrahedra and octahedra, Bernal 
found capped trigonal prisms, capped square anti- 
prisms and tetragonal dodecahedra. He also identified 
uncapped trigonal prisms and square antiprisms; these 
latter polyhedra, having a mixture of square and 
equilaterial triangular faces, are examples of semi- 
regular or Archimedean polyhedra. 

The above discussion indicates that void coor- 
dination polyhedra in dense packings of identical 
spheres have triangulated or Archimedean form. The 
distinguishing features of these polyhedra are that all 
the edge lengths have magnitudes close to that of the 
sphere diameter, and that the central void is too small 
to accommodate a further sphere. It is reasonable to 
expect such void polyhedra to be prominent in f.c,c. 
metal grain boundary structures. The polyhedra in 
b.c.c, metal boundaries are likely to be similar to those 
in f.c.c, but, in general, distorted. It is reasonable to 
anticipate polyhedra having edge lengths with magni- 
tudes equal to (100) and ½(111) and values inter- 
mediate between these two. 

Computer-simulated structures 

We first consider the constraints on the formation of 
polyhedra at coincidence grain boundaries; there are 
two: 
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(a) the sequence of polyhedra forming the interface 
must be periodic due to the periodicity of the meeting 
grains; 

(b) the interfacial polyhedra must be structurally 
complementary to those of the adjacent crystals. 

In the computer-simulation work carried out so far, 
mainly (100) and (110) tilt boundaries have been 
considered. Therefore, because of constraint (a), only 
polyhedra consistent with ... ababa.., stacking need be 
considered, i.e. the void polyhedra illustrated in Fig. 1 
and the cube. 

The general features of the structure of (100) and 
(110)  tilt boundaries in AI have been reported (Smith, 
Vitek & Pond, 1977; Pond & Vitek, 1977; Pond, Smith 
& Vitek, 1979). Minimum-energy boundaries are 
generally narrow configurations characterized by rela- 
tive displacements away from the coincidence 
position, and having somewhat lower density than 
perfect f.c.c, crystals. Tetrahedral, octahedral and/or 
trigonal prismatic void coordination polyhedra occur 
invariably, and often the square faces of trigonal prisms 
are capped by half octahedra. Fig. 2 shows the 27 = 9 
(1 i4) boundary in A1. The boundary may be regarded 
as a sequence of void polyhedra as shown in Fig. 2(b); 
tricapped trigonal prisms, s (shown hatched), are 
connected to bicapped trigonal prisms, t, by tetra- 
hedra, u, all having edge magnitudes close to a/v/2, 
where a is the lattice parameter. However, the 
restraining forces of the adjacent crystals do not allow 
all the interfacial material to form well-defined tri- 
angulated or Archimedean polyhedra; other irregular 

(a) (b) 

(c) (d) 

(e) (f) 
Fig. I. Triangulated and Archimedean void coordination poly- 

hedra consistent with ...ababa... stacking; (a) tetrahedron, (b) 
octahedron, (c) trigonal prism, (d) capped trigonal prism, (e) 
square antiprism, ( f )  pentagonal bipyramid. All edges have 
equal length. 

polyhedra, r, are also formed. The occurrence of 
isolated irregular polyhedra in this way is a general 
feature of the boundaries in f.c.c, metals studied so far, 
although exceptions do occur such as the very low 
energy 27= 11 symmetrical (311) boundary which 
comprises entirely capped trigonal prisms (extended 
5% in one dimension) and tetrahedra (Pond, Smith & 
Vitek, 1979). 

An example of a minimum-energy boundary in b.c.c. 
Fe is shown in Fig. 3(a), and its analysis in terms of 
void coordination polyhedra in Fig. 3 (b). The boundary 
has the same crystallographi_c form as that in Fig. 2 (a), 
i.e. 27=9 symmetrical (114). Pentagonal biprisms 
ecfhgde' and kilnmjk' (where each letter represents a 
vertex atom and e' is (110) perpendicularly below e, 
etc.) are connected to each other by face-sharing tetra- 
hedra eifh, eijh, ehjg and jhik'. In this structure, micro- 
scopic mirror symmetry across the interface has been 
preserved and the atoms b and h occupy sites very 
close to coincidence sites; such configurations appear 
to be more common in boundaries of b.c.c, metals than 
of f.c.c. The coordination polyhedra of atoms e and k 
are pentagonal prisms, e.g. cfhgdc'f 'h'g'd',  in which 
the edge magnitudes in the pentagonal rings are close to 
av/3/2 but the axes have a magnitude equal to v/2a [c.f. 
restriction (a)]. Atoms e and k do not occupy the centre 
of their respective prisms but have relaxed to the right 

A + + A + ÷ A + + ~ + ÷ ~ ÷ ÷ 

+ ~ ~ + A A ÷ A A + A A ÷ & 
+ ~ ÷ ÷ A ÷ ÷ ~ + ÷ A ÷ ÷ & 

÷ A ÷ ÷ A ÷ ~ ~- A ÷ + A ÷ & A 
A + ÷ A A A + ÷ ~ ~ + & A ÷ + & ÷ ÷ & ~- 

~ ~ ..... .r""~ ~...~ + +,, +- .... + ,, ~'~,., + ... %.,. + 
A N L A A 

.... ÷ + h'" ÷ + h ~ " + h" a + ~"A + 

A + + ,% /. + L .~ ~ + + /~ ~ ÷ ~ ~ t, A + + a 

(a) 

r s t u 

~+\ ~ ,.,¢;777~ : . . . .  - ' " ' ~  .~--. , ~ " ' . . .  !... " 

i :~i .i:: .> i:: J:: ~ .-:= 

' ' (b) 
Fig. 2. (a) Low energy 2~ = 9 symmetrical (1 ]4) boundary in Al. 

The tilt axis is <ll0> and is perpendicular to the plane of the 
page; triangles and crosses represent ...ababa... stacking. (b) 
Schematic drawing of the sequence of void coordination poly- 
hedra constituting the boundary in (a). The drawing has been 
constructed by tracing atomic positions in the interfacial region 
of (a), and joining these in order to show the edges of the void 
coordination polyhedra. Solid lines correspond to edges perpen- 
dicular to the tilt axis, and dotted lines correspond to inclined 
edges. The symbols s, t and u are located above examples of a 
tricapped trigonal prism (the trigonal prism is hatched), a 
bicapped trigonal prism and a tetrahedron, respectively. The 
symbol r corresponds to an irregular polyhedron which is not 
closely similar to any of the polyhedra in Fig. 1. The horizontal 
bar shows the length of the periodic boundary structure. 
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somewhat so as to be separated by approximately 
ax/3/2 from the atoms f ,h ,g  and l,n,m. A similar 
argument applies to b and h whose atomic coordination 
polyhedra are the trigonal prisms abca'b'c' and 
eije'i'j'. Thus, this particular boundary is comprised of 
triangulated void coordination polyhedra, although the 
axis length of the pentagonal bipyramids is av/2, i.e. not 
close-packed, and the triangulated faces are not 
equilateral. Finally, primitive cubic void coordination 
polyhedra have been found in some boundaries in Fe 
(Vitek, Smith & Pond, 1979). 

Sites for segregated impurities 

The two features most important in determining 
preferred interfacial sites for a segregant atom are its 
size and preferred coordination number. Impurity 
atoms may occupy interstitial sites, i.e. voids, or substi- 
tutional sites. Those occupying interstitial sites are 
likely to be smaller than solvent atoms; the sizes of 
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Fig. 3. (a) Low energy 27 = 9 symmetrical (1 i4)boundary in Fe. 
Symbols as for 2(a). (b) Schematic drawing of the sequence of 
void coordination polyhedra. 

inner spheres which can occupy the void coordination 
polyhedra illustrated in Fig. 1 are listed in Table 1. 
(Solvent atoms are assumed to have unit radius.) 
Irregular polyhedra in a given boundary structure, such 
as illustrated in Fig. 2, may provide additional inter- 
stitial sites with characteristic size and coordination 
number. 

Atoms rather larger than the solvent atoms may 
occupy substitutional sites; e.g. an atom with radius 
25% larger than that of the solvent could replace atom 
e in Fig. 3. The coordination polyhedron of atom b is a 
trigonal prism, acda'c'd', extended along its axis; it is 
noted that Sn, Sb and S are coordinated in a similar 
way in FeSn, FeSb and FeS which all have the NiAs 
structure. However, in these latter structures, the Fe 
atoms are not close-packed on the triangular faces of 
the prism but are parallel to the axis. Impurity atoms 
may also segregate to interstitial or substitutional sites 
which are associated in linear or planar arrays or finite 
clusters. A possible example of an isolated impurity 
cluster could be the formation of a tetrahedral arrange- 
ment of impurity atoms by substitution of a group of 
atoms such as eifh in Fig. 3. It is known that certain 
group V elements, P, Sb, As and Bi, form tetrahedral 
molecules in the vapour state and these molecules can 
be stable at relatively low temperatures (Bailar, 
Emeleus, Nyholm & Trotman-Dickenson, 1973). The 
A s - A s  distance in As4 is 2.43 compared with 2 . 5 6 / I  
for Fe--Fe in b.c.c. Fe, i.e. the strain of As--As bonds 
in substitutional tetrahedra would be of the order of 
5%. 

Discussion 

Analysis of simulated grain boundary structures in 
terms of atom packing has been found to be very 
useful. The present authors believe that atom-packing 
analysis is most valuable as an analytical tool rather 
than as the basis for a model of grain boundary 
structure with predictive capability. As an analytical 
tool it has facilitated four major contributions to the 

Table 1. Void coordination polyhedra consistent with 
. . .  ababa. . ,  stacking 

Coordination 
Void coordination Inner sphere number of 

polyhedron radius interstitial impurity 

Tetrahedron 0.225 4 
Octahedron 0.414 6 
Trigonal prism 0.732 6 
Trigonal prism (capped) 0.732 9 
Pentagonal bipyramid * 7 
Square antiprism 0.645 8 

* 0.0 unless extended along axis. 
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understanding of computer-simulated grain boundary 
structures. It has: 

(i) elucidated the nature of structural elements in 
minimum energy boundaries, 

(ii) provided an appreciation of the reasons under- 
lying the exceptionally low energy of certain boundaries 
such as the Z' = 11, (311) in AI, 

(iii) clarified important structural differences bet- 
ween boundaries in AI and Fe, 

(iv) provided a method for the identification of 
possible sites for impurities segregated to grain 
boundaries. 

It was pointed out that the 27 = 11 symmetrical (311) 
boundary structure in A1 has exceptionally low energy, 
i.e. of the order of that for the coherent twin, and 
comprises entirely capped trigonal prisms and tetra- 
hedra with edge lengths distorted less than about 5% 
compared with the ideal value (this was the tolerance 
used by Bernal). In other words, the atoms constituting 
this boundary, as for the coherent (111) 27= 3 twin 
boundary in f.c.c., are very efficiently packed without 
recourse to extensive local atomic relaxations. It is 
often helpful in this context to consider the two grains 
initially unrelaxed and separated at the interface. The 
grain surfaces, as represented by the outermost faces of 
the crystals' void coordination polyhedra, are non- 
planar tessellations of equilateral triangles in f.c.c. 
material and isosceles triangles for b.c.c. Efficiently 
packed low-energy boundaries in f.c.c, metals appear to 
result if the two grains can be brought together in such 
a way that, with the aid of relative displacement and 
minimal local atomic relaxation, the interfacial con- 
figuration comprises predominantly triangulated and 
Archimedean void coordination polyhedra. 

In the 27=11 (311) and 27=3 coherent (111) 
boundaries in AI, there is no relative displacement and 
atoms occupy coincidence sites. Expressed in atom- 
packing terms, the advantage of coincidence-site atoms 
is that they correspond to vertices common to the void 
coordination polyhedra of both grains. However, in 
general for boundaries in f.c.c, metals, relative displace- 
ment occurs in order to avoid overlap of atoms in the 
initial coincidence structure (Pond, Smith & Clark, 
1974). Moreover, even with the aid of relative displace- 

ment and local atomic relaxation it is not generally 
possible for structures corresponding to sequences of 
triangulated and Archimedean polyhedra only to be 
attained. Boundary structures in b.c.c. Fe are some- 
what different in the sense that structures containing 
coincident atoms are found to be stable more com- 
monly than for f.c.c. This corresponds to the relatively 
greater importance of local relaxation in b.c.c, struc- 
tures where void coordination polyhedral edge lengths 
can be in the range between the magnitudes of about 
(100) and ½(111) compared with the f.c.c, case where 
edges must be about ½(110) for close-packing.i 
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Charles Frank FRS for guidance. The authors would 
also like to thank Professor D. Hull and Professor Sir 
Peter Hirsch FRS for encouragement, and one author 
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of the National Science Foundation under Grant No. 
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