50 research outputs found

    Cyst detection and viability assessment of Balantioides coli in environmental samples: Current status and future needs

    Get PDF
    The ciliate Balantioides coli is a human enteric parasite that can cause life-threatening infections. It is a food- and waterborne parasite, with cysts being the infective stage. Despite its importance as a potential pathogen, few reports have investigated its presence in environmental samples, and some issues need attention including i) The accuracy of B. coli identification. In most cases, the protozoa is identified only by its morphological traits, which can be identical to those from other parasitic ciliates of animals. Genetic analysis of cysts recovered from environmental samples is necessary for species confirmation. In addition, genetic methods used with faecal samples need to be adequately validated with environmental matrices. ii) The methodology for searching this parasite in environmental samples. The protocols include an initial phase to isolate the cysts from the matrix followed by a second phase in which concentration procedures are usually applied. The methods may be valid but are not standardised and differences between studies could affect the results obtained. iii) The areas that needs further research. The development of genetic identification methods and standardised analytical protocols in environmental samples are required, as well as the assessment of viability and infectivity of B. coli cysts. The development of axenic culture systems will boost research on this parasite.S

    Long-Term Preservation and Storage of Faecal Samples in Whatman® Cards for PCR Detection and Genotyping of Giardia duodenalis and Cryptosporidium hominis

    Get PDF
    Preservation and conservation of biological specimens, including faecal samples, is a challenge in remote areas or poor-resource settings where the cold chain cannot be maintained. This study aims at evaluating the suitability of filter cards for long-term storage of faecal samples of animal and human origin positive to the diarrhoea-causing protozoan parasites, Giardia duodenalis and Cryptosporidium hominis. Three commercially available Whatman® Filter Cards were comparatively assessed: the FTA® Classic Card, the FTA® Elute Micro Card, and the 903 Protein Saver Card. Human faecal samples positive to G. duodenalis (n = 5) and C. hominis (n = 5) were used to impregnate the selected cards at given storage (1 month, 3 months, and 6 months) periods and temperature (-20 °C, 4 °C, and room temperature) conditions. Parasite DNA was detected by PCR-based methods. Sensitivity assays and quality control procedures to assess suitability for genotyping purposes were conducted. Overall, all three Whatman® cards were proven useful for the detection and molecular characterisation of G. duodenalis and C. hominis under the evaluated conditions. Whatman® cards represent a simple, safe, and cost-effective option for the transportation, preservation, and storage of faecal samples without the need of the cold chain.This research was funded by the Health Institute Carlos III (ISCIII), Ministry of Science, Innovation and Universities (Spain), grant number PI16CIII/00024. David González-Barrio was recipient of a “Sara Borrell” postdoctoral fellow-ship (CD19CIII/00011) funded by the Spanish Ministry of Science, Innovation and Universities.S

    Prevalence of Toxoplasma gondii in Endangered Wild Felines (Felis silvestris and Lynx pardinus) in Spain

    Get PDF
    The wildcat (Felis silvestris) and the Iberian lynx (Lynx pardinus) are important species in Spain, considered as near-threatened and endangered, respectively. Both can be infected by Toxoplasma gondii, a parasite that can cause morbidity and mortality in transplacentally-infected or immunocompromised mammals. The data on the prevalence of this parasite in wild populations of these species in Spain are outdated. The objective of this study was to update information and evaluate the role of these felines in parasite epidemiology and the potential impact of the parasite on their conservation. Blood and fecal samples were collected from captured animals, as well as the tongue, diaphragm, and spleen, from animals killed in road accidents in central Spain. An indirect fluorescent antibody test (IFAT) was used to detect parasite antibodies in serum, microscopy and molecular analysis were used to detect oocysts in feces, and molecular analysis was used to determine the existence of tissue cysts. Seroprevalence was 85% in wildcats and 45% in lynx, and parasite DNA was detected in the feces of one wildcat and in tissue samples from 10 wildcats and 11 Iberian lynxes. These results highlight the epidemiological importance and high risk of T. gondii infection in animals and humans in the studied areas. Considering feline susceptibility to infection, monitoring programs are needed to assess the health status of wild felines.This research was partially funded by Alfonso X el Sabio Foundation, project number 1.010.119 and Health Research Fund, Instituto de Salud Carlos III, Ministry of Science and Innovation, project FIS AESI PI21CIII/00031.S

    Presence and genetic diversity of enteric protists in captive and semi-captive non-human primates in côte d'Ivoire, Sierra Leone, and Peru

    Get PDF
    Little information is currently available on the occurrence and genetic diversity of pathogenic and commensal protist species in captive and semi-captive non-human primates (NHP) resident in zoological gardens or sanctuaries in low- and medium-income countries. In this molecular-based study, we prospectively collected individual faecal samples from apparently healthy NHP at the Abidjan Zoological Garden (AZG) in Côte d'Ivoire, the Tacugama Sanctuary (TS) in Sierra Leone, and the Quistococha Zoological Garden (QZG) in Peru between November 2018 and February 2020. We evaluated for the presence of pathogenic (Cryptosporidium spp., Entamoeba histolytica, Giardia duodenalis, Blastocystis sp., Enterocytozoon bieneusi, Balantioides coli) and commensal (Entamoeba dispar, Troglodytella abrassarti) protist species using PCR methods and Sanger sequencing. Giardia duodenalis was the most prevalent species found (25.9%, 30/116), followed by Blastocystis sp. (22.4%, 26/116), and E. dispar (18.1%, 21/116). We detected E. bieneusi (4.2%, 1/24) and T. abrassarti (12.5%, 3/24) only on NHP from AZG. Cryptosporidium spp., E. histolytica, and B. coli were undetected at the three sampling sites investigated here. Sequence analyses revealed the presence of zoonotic sub-assemblages BIII (n = 1) in AZG and BIV (n = 1) in TS within G. duodenalis. We identified Blastocystis subtype ST3 (100%, 6/6) in AZG, ST1 (80.0%, 12/15), ST2 (6.7%, 1/15), and ST3 (13.3%, 2/15) in TS, and ST2 (80.0%, 4/5) and ST3 (20.0%, 1/5) in QZG. The only E. bieneusi isolate detected here was identified as zoonotic genotype CAF4. Our PCR-based data indicate that potentially pathogenic protist species including G. duodenalis, Blastocystis sp., E. bieneusi, and B. coli are present at variable rates in the three NHP populations investigated here. The identification of zoonotic genotypes within these species indicates that human-NHP transmission is possible, although the extent and directionality of these events need to be elucidated in future molecular surveys.This study was funded by the Health Institute Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness under project PI16CIII/00024. David González-Barrio is the recipient of a ‘Sara Borrell’ postdoctoral fellowship (CD19CIII/00011) funded by the Spanish Ministry of Science, Innovation and Universities. Alejandro Dashti is the recipient of a PFIS contract (FI20CIII/00002) funded by the Spanish Ministry of Science and Innovation and Universities.S

    New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto

    Get PDF
    Cystic echinococcosis, a zoonotic disease caused by Echinococcus granulosus sensu lato (s.l.), is a significant global public health concern. Echinococcus granulosus s. l. is currently divided into numerous genotypes (G1-G8 and G10) of which G1-G3 are the most frequently implicated genotypes in human infections. Although it has been suggested that G1-G3 could be regarded as a distinct species E. granulosus sensu stricto (s. s.), the evidence to support this is inconclusive. Most importantly, data from nuclear DNA that provide means to investigate the exchange of genetic material between G1-G3 is lacking as none of the published nuclear DNA studies have explicitly included G2 or G3. Moreover, the commonly used relatively short mtDNA sequences, including the complete coxl gene, have not allowed unequivocal differentiation of genotypes G1-G3. Therefore, significantly longer mtDNA sequences are required to distinguish these genotypes with confidence. The main aim of this study was to evaluate the phylogenetic relations and taxonomy of genotypes G1-G3 using sequences of nearly complete mitogenomes (11,443 bp) and three nuclear loci (2984 bp). A total of 23 G1-G3 samples were analysed, originating from 5 intermediate host species in 10 countries. The mtDNA data demonstrate that genotypes G1 and G3 are distinct mitochondrial genotypes (separated by 37 mutations), whereas G2 is not a separate genotype or even a monophyletic cluster, but belongs to G3. Nuclear data revealed no genetic separation of G1 and G3, suggesting that these genotypes form a single species due to ongoing gene flow. We conclude that: (a) in the taxonomic sense, genotypes G1 and G3 can be treated as a single species E. granulosus s. s.; (b) genotypes G1 and G3 should be regarded as distinct genotypes only in the context of mitochondrial data; (c) we recommend excluding G2 from the genotype list. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    Evaluation of the Spanish population coverage of a prospective HLA haplobank of induced pluripotent stem cells

    Get PDF
    Background: iPSC (induced pluripotent stem cells) banks of iPSC lines with homozygous HLA (human leukocyte antigen) haplotypes (haplobanks) are proposed as an affordable and off-the-shelf approach to allogeneic transplantation of iPSC derived cell therapies. Cord blood banks offer an extensive source of HLA-typed cells suitable for reprogramming to iPSC. Several initiatives worldwide have been undertaken to create national and international iPSC haplobanks that match a significant part of a population. Methods: To create an iPSC haplobank that serves the Spanish population (IPS-PANIA), we have searched the Spanish Bone Marrow Donor Registry (REDMO) to identify the most frequently estimated haplotypes. From the top ten donors identified, we estimated the population coverage using the criteria of zero mismatches in HLA-A, HLA-B, and HLA-DRB1 with different stringencies: high resolution, low resolution, and beneficial mismatch. Results: We have calculated that ten cord blood units from homozygous donors stored at the Spanish cord blood banks can provide HLA-A, HLA-B, and HLA-DRB1 matching for 28.23% of the population. Conclusion: We confirm the feasibility of using banked cord blood units to create an iPSC haplobank that will cover a significant percentage of the Spanish and international population for future advanced therapy replacement strategies

    Intestinal Protists in Captive Non-human Primates and Their Handlers in Six European Zoological Gardens. Molecular Evidence of Zoonotic Transmission

    Get PDF
    We assessed the occurrence, genetic diversity, and zoonotic potential of four protozoan (Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Giardia duodenalis), one stramenopile (Blastocystis sp.), one microsporidia (Enterocytozoon bieneusi), and two ciliate (Balantioides coli, Troglodytella abrassarti) intestinal parasite or commensal protist species in captive non-human primates (NHP) and their zookeepers from six European zoological gardens in France (n = 1), Germany (n = 1), and Spain (n = 4). Faecal samples from NHP (n = 454) belonging to 63 species within 35 genera and humans (n = 70) were collected at two sampling periods in each participating institution between October 2018-August 2021. Detection and species identification was accomplished by PCR and Sanger sequencing of the ssu rRNA and/or ITS genes. Sub-genotyping analyses using specific markers were conducted on isolates positive for G. duodenalis (gdh, bg, tpi) and Cryptosporidium spp. (gp60). Overall, 41.0% (186/454) and 30.0% (21/70) of the faecal samples of NHP and human origin tested positive for at least one intestinal protist species, respectively. In NHP, Blastocystis sp. was the most prevalent protist species found (20.3%), followed by G. duodenalis (18.1%), E. dispar (7.9%), B. coli and T. abrassarti (1.5% each), and Cryptosporidium spp. and E. bieneusi (0.9% each). Occurrence rates varied largely among NHP host species, sampling periods, and zoological institutions. The predominant protist species found in humans was Blastocystis sp. (25.7%), followed by Cryptosporidium spp. (2.9%), E. dispar (1.4%), and G. duodenalis (1.4%). Sequencing of PCR-positive amplicons in human and/or NHP confirmed the presence of Cryptosporidium in six isolates (C. hominis: 66.7%, C. parvum: 33.3%), G. duodenalis in 18 isolates (assemblage A: 16.7%, assemblage B: 83.3%), Blastocystis in 110 isolates (ST1:38.2%, ST2:11.8%, ST3: 18.2%, ST4: 9.1%, ST5: 17.3%, ST8: 2.7%, ST13: 0.9%), and E. bieneusi in four isolates (CM18: 75.0%, Type IV: 25.0%). Zoonotic transmission events involving Blastocystis ST1-ST4 were identified in four zoological institutions. Zoonotic transmission of C. hominis was highly suspected, but not fully demonstrated, in one of them. Monitoring of intestinal protist species might be useful for assessing health status of captive NHP and their zookeepers, and to identify transmission pathways of faecal-orally transmitted pathogens.This study was funded by the Health Institute Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness under project PI16CIII/00024. DG-B was recipient of a Sara Borrell Postdoctoral Fellowship (CD19CIII/00011) funded by the Spanish Ministry of Science, Innovation and Universities. AD was recipient of a PFIS contract (FI20CIII/00002) funded by the Spanish Ministry of Science and Innovation and Universities.S
    corecore