720 research outputs found

    Hydrostatic Equilibrium of a Perfect Fluid Sphere with Exterior Higher-Dimensional Schwarzschild Spacetime

    Get PDF
    We discuss the question of how the number of dimensions of space and time can influence the equilibrium configurations of stars. We find that dimensionality does increase the effect of mass but not the contribution of the pressure, which is the same in any dimension. In the presence of a (positive) cosmological constant the condition of hydrostatic equilibrium imposes a lower limit on mass and matter density. We show how this limit depends on the number of dimensions and suggest that Λ>0\Lambda > 0 is more effective in 4D than in higher dimensions. We obtain a general limit for the degree of compactification (gravitational potential on the boundary) of perfect fluid stars in DD-dimensions. We argue that the effects of gravity are stronger in 4D than in any other number of dimensions. The generality of the results is also discussed

    Exterior spacetime for stellar models in 5-dimensional Kaluza-Klein gravity

    Get PDF
    It is well-known that Birkhoff's theorem is no longer valid in theories with more than four dimensions. Thus, in these theories the effective 4-dimensional picture allows the existence of different possible, non-Schwarzschild, scenarios for the description of the spacetime outside of a spherical star, contrary to general relativity in 4D. We investigate the exterior spacetime of a spherically symmetric star in the context of Kaluza-Klein gravity. We take a well-known family of static spherically symmetric solutions of the Einstein equations in an empty five-dimensional universe, and analyze possible stellar exteriors that are conformal to the metric induced on four-dimensional hypersurfaces orthogonal to the extra dimension. All these exteriors are continuously matched with the interior of the star. Then, without making any assumptions about the interior solution, we prove the following statement: the condition that in the weak-field limit we recover the usual Newtonian physics singles out an unique exterior. This exterior is "similar" to Scharzschild vacuum in the sense that it has no effect on gravitational interactions. However, it is more realistic because instead of being absolutely empty, it is consistent with the existence of quantum zero-point fields. We also examine the question of how would the deviation from the Schwarzschild vacuum exterior affect the parameters of a neutron star. In the context of a model star of uniform density, we show that the general relativity upper limit M/R < 4/9 is significantly increased as we go away from the Schwarzschild vacuum exterior. We find that, in principle, the compactness limit of a star can be larger than 1/2, without being a black hole. The generality of our approach is also discussed.Comment: Typos corrected. Accepted for publication in Classical and Quantum Gravit

    Brane world solutions of perfect fluid in the background of a bulk containing dust or cosmological constant

    Full text link
    The paper presents some solutions to the five dimensional Einstein equations due to a perfect fluid on the brane with pure dust filling the entire bulk in one case and a cosmological constant (or vacuum) in the bulk for the second case. In the first case, there is a linear relationship between isotropic pressure, energy density and the brane tension, while in the second case, the perfect fluid is assumed to be in the form of chaplygin gas. Cosmological solutions are found both for brane and bulk scenarios and some interesting features are obtained for the chaplygin gas on the brane which are distinctly different from the standard cosmology in four dimensions.Comment: 10 Latex pages, 5 figure

    Self-similar cosmologies in 5D: spatially flat anisotropic models

    Full text link
    In the context of theories of Kaluza-Klein type, with a large extra dimension, we study self-similar cosmological models in 5D that are homogeneous, anisotropic and spatially flat. The "ladder" to go between the physics in 5D and 4D is provided by Campbell-Maagard's embedding theorems. We show that the 5-dimensional field equations RAB=0R_{AB} = 0 determine the form of the similarity variable. There are three different possibilities: homothetic, conformal and "wave-like" solutions in 5D. We derive the most general homothetic and conformal solutions to the 5D field equations. They require the extra dimension to be spacelike, and are given in terms of one arbitrary function of the similarity variable and three parameters. The Riemann tensor in 5D is not zero, except in the isotropic limit, which corresponds to the case where the parameters are equal to each other. The solutions can be used as 5D embeddings for a great variety of 4D homogeneous cosmological models, with and without matter, including the Kasner universe. Since the extra dimension is spacelike, the 5D solutions are invariant under the exchange of spatial coordinates. Therefore they also embed a family of spatially {\it inhomogeneous} models in 4D. We show that these models can be interpreted as vacuum solutions in braneworld theory. Our work (I) generalizes the 5D embeddings used for the FLRW models; (II) shows that anisotropic cosmologies are, in general, curved in 5D, in contrast with FLRW models which can always be embedded in a 5D Riemann-flat (Minkowski) manifold; (III) reveals that anisotropic cosmologies can be curved and devoid of matter, both in 5D and 4D, even when the metric in 5D explicitly depends on the extra coordinate, which is quite different from the isotropic case.Comment: Typos corrected. Minor editorial changes and additions in the Introduction and Summary section

    Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

    Get PDF
    In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the "splitting" of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure "constant" and the Thomson cross section are also discussed.Comment: V2: References added, discussion extended. V3 is identical to V2, references updated. To appear in General Relativity and Gravitatio

    Pinworms of the red howler monkey (Alouatta seniculus) in Colombia. Gathering the pieces of the pinworm-primate puzzle

    Get PDF
    Pinworms of primates are believed to be highly host specific parasites, forming co-evolutionary associations with their hosts. In order to assess the strength and reach of such evolutionary links, we need to have a broad understanding of the pinworm diversity associated with primates. Here, we employed an integrative taxonomic approach to assess pinworm diversity in red howler monkeys in Colombia. Molecular and morphological evidence validate the presence of at least four different species of Trypanoxyuris occurring in red howler monkeys: T. minutus, a widely distributed species, and three new species, T. seunimiii n. sp., T. kemuimae n. sp. and T. kotudoi n. sp. The mitochondrial COI gene and the 28S ribosomal gene were used for phylogenetic assessments through Bayesian inference. The three new species were morphologically distinct and formed reciprocally monophyletic lineages. Further molecular lineage subdivision in T. minutus and T. kotudoi n. sp. without morphological correspondence, suggests the potential scenario for the existence of cryptic species. Phylogenetic relationships imply that the different species of Trypanoxyuris occurring in each howler monkey species were acquired through independent colonization events. On-going efforts to uncover pinworm diversity will allow us to test the degree of host specificity and the co-phylogenetic hypothesis, as well as to further unravel the primate-pinworm evolutionary history puzzle

    Individual and community-level socioeconomic position and its association with adolescents experience of childhood sexual abuse : a multilevel analysis of six countries in Sub-Saharan Africa

    Get PDF
    Background: Childhood sexual abuse (CSA) is a substantial global health and human rights problem and consequently a growing concern in sub-Saharan Africa. We examined the association between individual and community-level socioeconomic status (SES) and the likelihood of reporting CSA. Methods: We applied multiple multilevel logistic regression analysis on Demographic and Health Survey data for 6,351female adolescents between the ages of 15 and 18 years from six countries in sub-Saharan Africa, between 2006 and 2008. Results: About 70% of the reported cases of CSA were between 14 and 17 years. Zambia had the highest proportion of reported cases of CSA (5.8%). At the individual and community level, we found that there was no association between CSA and socioeconomic position. This study provides evidence that the likelihood of reporting CSA cut across all individual SES as well as all community socioeconomic strata. Conclusions: We found no evidence of socioeconomic differentials in adolescents’ experience of CSA, suggesting that adolescents from the six countries studied experienced CSA regardless of their individual- and community-level socioeconomic position. However, we found some evidence of geographical clustering, adolescents in the same community are subject to common contextual influences. Further studies are needed to explore possible effects of countries’ political, social, economic, legal, and cultural impact on Childhood sexual abuse

    Transition from decelerated to accelerated cosmic expansion in braneworld universes

    Full text link
    Braneworld theory provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Non-static extra dimensions can generally lead to a variable vacuum energy, which in turn may explain the present accelerated cosmic expansion. We concentrate our attention in models where the vacuum energy decreases as an inverse power law of the scale factor. These models agree with the observed accelerating universe, while fitting simultaneously the observational data for the density and deceleration parameter. The redshift at which the vacuum energy can start to dominate depends on the mass density of ordinary matter. For Omega = 0.3, the transition from decelerated to accelerated cosmic expansion occurs at z approx 0.48 +/- 0.20, which is compatible with SNe data. We set a lower bound on the deceleration parameter today, namely q > - 1 + 3 Omega/2, i.e., q > - 0.55 for Omega = 0.3. The future evolution of the universe crucially depends on the time when vacuum starts to dominate over ordinary matter. If it dominates only recently, at an epoch z < 0.64, then the universe is accelerating today and will continue that way forever. If vacuum dominates earlier, at z > 0.64, then the deceleration comes back and the universe recollapses at some point in the distant future. In the first case, quintessence and Cardassian expansion can be formally interpreted as the low energy limit of our model, although they are entirely different in philosophy. In the second case there is no correspondence between these models and ours.Comment: In V2 typos are corrected and one reference is added for section 1. To appear in General Relativity and Gravitatio

    Levi-Civita spacetimes in multidimensional theories

    Full text link
    We obtain the most general static cylindrically symmetric vacuum solutions of the Einstein field equations in (4+N)(4 + N) dimensions. Under the assumption of separation of variables, we construct a family of Levi-Civita-Kasner vacuum solutions in (4+N)(4 + N). We discuss the dimensional reduction of the static solutions. Depending on the reduction procedure, they can be interpreted either as a scalar-vacuum generalization of Levi-Civita spacetimes, or as the effective 4D vacuum spacetime outside of an idealized string in braneworld theory.Comment: 7 pages. Accepted for publication in Mod. Phys. Lett. A (MPLA
    • …
    corecore