4 research outputs found

    Fluorometric Liposome Screen for Inhibitors of a Physiologically Important Bacterial Ion Channel

    Get PDF
    The bacterial K+ homeostasis machinery is widely conserved across bacterial species, and different from that in animals. Dysfunction in components of the machinery has an impact on intracellular turgor, membrane potential, adaptation to changes in both extracellular pH and osmolarity, and in virulence. Using a fluorescence-based liposome flux assay, we have performed a high-throughput screen to identify novel inhibitors of the KtrAB ion channel complex from Bacillus subtilis, a component of the K+ homeostasis machinery that is also present in many bacterial pathogens. The screen identified 41 compounds that inhibited K+ flux and that clustered into eight chemical groups. Many of the identified inhibitors were found to target KtrAB with an in vitro potency in the low µM range. We investigated the mechanisms of inhibition and found that most molecules affected either the membrane component of the channel, KtrB alone or the full KtrAB complex without a preference for the functional conformation of the channel, thus broadening their inhibitory action. A urea derivative molecule that inhibited the membrane component of KtrAB affected cell viability in conditions in which KtrAB activity is essential. With this proof-of-concept study, we demonstrate that targeting components of the K+ homeostasis machinery has the potential as a new antibacterial strategy and that the fluorescence-based flux assay is a robust tool for screening chemical libraries.This work was supported by FEDER funds through COMPETE 2020-POCI, Portugal 2020, and FCT – Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior: POCI-01-0145-FEDER-029863 (PTDC/BIA-BQM/29863/2017), and by “Fundação Luso-Americana para o Desenvolvimento” FLAD Life Science 2020 awarded to JM-C. We acknowledge FCT fellowship SFRH/BPD/105672/2015 and contract DL 57/2016/CP1355/CT0026 awarded to AF, fellowship SFRH/BPD/107785/2015 to AP, and fellowship SFRH/BD/123761/2016 to CT-D

    Global analysis of gene expression in mineralizing fish vertebra-derived cell lines: new insights into anti-mineralogenic effect of vanadate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fish has been deemed suitable to study the complex mechanisms of vertebrate skeletogenesis and gilthead seabream (<it>Sparus aurata</it>), a marine teleost with acellular bone, has been successfully used in recent years to study the function and regulation of bone and cartilage related genes during development and in adult animals. Tools recently developed for gilthead seabream, <it>e.g. </it>mineralogenic cell lines and a 4 × 44K Agilent oligo-array, were used to identify molecular determinants of <it>in vitro </it>mineralization and genes involved in anti-mineralogenic action of vanadate.</p> <p>Results</p> <p>Global analysis of gene expression identified 4,223 and 4,147 genes differentially expressed (fold change - FC > 1.5) during <it>in vitro </it>mineralization of VSa13 (pre-chondrocyte) and VSa16 (pre-osteoblast) cells, respectively. Comparative analysis indicated that nearly 45% of these genes are common to both cell lines and gene ontology (GO) classification is also similar for both cell types. Up-regulated genes (FC > 10) were mainly associated with transport, matrix/membrane, metabolism and signaling, while down-regulated genes were mainly associated with metabolism, calcium binding, transport and signaling. Analysis of gene expression in proliferative and mineralizing cells exposed to vanadate revealed 1,779 and 1,136 differentially expressed genes, respectively. Of these genes, 67 exhibited reverse patterns of expression upon vanadate treatment during proliferation or mineralization.</p> <p>Conclusions</p> <p>Comparative analysis of expression data from fish and data available in the literature for mammalian cell systems (bone-derived cells undergoing differentiation) indicate that the same type of genes, and in some cases the same orthologs, are involved in mechanisms of <it>in vitro </it>mineralization, suggesting their conservation throughout vertebrate evolution and across cell types. Array technology also allowed identification of genes differentially expressed upon exposure of fish cell lines to vanadate and likely involved in its anti-mineralogenic activity. Many were found to be unknown or they were never associated to bone homeostasis previously, thus providing a set of potential candidates whose study will likely bring insights into the complex mechanisms of tissue mineralization and bone formation.</p

    Establishment of primary cell cultures from fish calcified tissues

    No full text
    Fishes have been recently recognized as a suitable model organism to study vertebrate physiological processes, in particular skeletal development and tissue mineralization. However, there is a lack of well characterized in vitro cell systems derived from fish calcified tissues. We describe here a protocol that was successfully used to develop the first calcified tissue-derived cell cultures of fish origin. Vertebra and branchial arches collected from young gilthead seabreams were fragmented then submitted to the combined action of collagenase and trypsin to efficiently release cells embedded in the collagenous extracellular matrix. Primary cultures were maintained under standard conditions and spontaneously transformed to form continuous cell lines suitable for studying mechanisms of tissue mineralization in seabream. This simple and inexpensive protocol is also applicable to other calcified tissues and species by adjusting parameters to each particular case

    Marine green macroalgae: a source of natural compounds with mineralogenic and antioxidant activities

    No full text
    Marine macroalgae represent a valuable natural resource for bioactive phytochemicals with promising applications in therapeutics, although they remain largely under-exploited. In this work, the potential of two marine green macroalgae (Cladophora rupestris and Codium fragile) as a source of bioactive phenolic compounds was explored, and antioxidant, mineralogenic, and osteogenic activities were evaluated. For each species, a crude hydroalcoholic extract (CE) was prepared by solid/liquid extraction and fractionated by liquid/liquid purification into an ethyl acetate fraction (EAF) enriched in phenolic compounds and an aqueous fraction (AF). Antioxidant activity, assessed through radical scavenging activity and reducing power assay, was increased in EAF fraction of both species and closely related to the phenolic content in each fraction. Mineralogenic activity, assessed through extracellular matrix mineralization of a fish bone-derived cell line, was induced by EAF fractions (up to 600 % for C. rupestris EAF). Quantitative analysis of operculum formation in zebrafish larvae stained with alizarin red S further confirmed the osteogenic potential of EAF fractions in vivo, with an increase of more than 1.5-fold for both C. fragile and C. rupestris fractions, similar to vitamin D (control). Our results demonstrated a positive correlation between phenolic fractions and biological activity, suggesting that phenolic compounds extracted from marine green macroalgae may represent promising molecules toward therapeutic applications in the field of bone biology.European Regional Development Fund (ERDF)-Atlantic Area Programme through MARMED project [2011-1/164]European Era-Net, Seas-Era program through the project INVASIVES [ANR-12-SEAS-0002-01]Portuguese Foundation for Science and Technology (FCT) [UID/Multi/04326/2013
    corecore