141 research outputs found
Recommended from our members
Combined extended FIR/Kalman filtering for indoor robot localization via triangulation
A combined unbiased finite impulse response (UFIR) and Kalman filtering algorithm is proposed for mobile robot localization via triangulation utilizing noisy measurements. We consider a mobile robot travelling on an indoor floorspace with three nodes in a view. Under the not well-known initial robot state and noise statistics, the extended Kalman filter (EKF) may produce unacceptable estimates. The iterative extended UFIR (EFIR) filter ignores the noise statistics, but requires N initial points of linear measurements which are unavailable. The combined EFIR/Kalman algorithm utilizes N first EKF estimates with approximately set initial conditions and noise statistics as linear measurements for EFIR filter. It is shown that the combined algorithm is more accurate than EKF in robot localization under the real operation conditions. Simulations are provided for piecewise and circular robot trajectories
32 Bin Near-Infrared Time-Multiplexing Detector with Attojoule Single-Shot Energy Resolution
We present two implementations of photon counting time-multiplexing detectors
for near-infrared wavelengths, based on Peltier cooled InGaAs/InP avalanche
photo diodes (APDs). A first implementation is motivated by practical
considerations using only commercially available components. It features 16
bins, pulse repetition rates of up to 22 kHz and a large range of applicable
pulse widths of up to 100 ns. A second implementation is based on rapid gating
detectors, permitting deadtimes below 10 ns. This allows one to realize a high
dynamic-range 32 bin detector, able to process pulse repetition rates of up to
6 MHz for pulse width of up to 200 ps. Analysis of the detector response at
16.5% detection efficiency, reveals a single-shot energy resolution on the
attojoule level.Comment: 7 pages, 7 figure
MCD and MCPL characterization of luminescent Si(IV) and P(V) tritolylcorroles: the role of coordination number
Two triarylcorrole complexes, (hydroxy)[5,10,15-tritolylcorrolato]silicon-(TTC)Si(OH) and (dihydroxy)[5,10,15-tritolylcorrolato]phosphorous-(TTC)P(OH)2, have been investigated by magnetic circular dichroism (MCD) and magnetic circularly polarized luminescence (MCPL). The spectroscopic investigations have been combined with explicit calculation of MCD response through time-dependent density functional theory (TD-DFT) formalism. This has allowed us to better define the role of molecular orbitals in the transitions associated with the Soret and Q bands. Besides and more importantly, MCD has made it possible to follow the titration process of (TTC)Si(OH) in dimethyl sulfoxide (DMSO) solution with NaF and of (TTC)P(OH)2 in dichloromethane solution with alcohols in a complementary and, we dare say, more sensitive way with respect to absorption and fluorescence data. Finally, the MCPL spectra and the ancillary TD-DFT calculations have allowed us to characterize the excited state of (TTC)Si(OH). © 2021 The Authors. Published by American Chemical Society
Stationary excitation waves and multimerization in arrays of quantum emitters
We explore the features of an equally-spaced array of two-level quantum emitters, that can be either natural atoms (or molecules) or artificial atoms, coupled to a field with a single continuous degree of freedom (such as an electromagnetic mode propagating in a waveguide). We investigate the existence and characteristics of bound states, in which a single excitation is shared among the emitters and the field. We focus on bound states in the continuum, occurring in correspondence of excitation energies in which a single excited emitter would decay. We characterize such bound states for an arbitrary number of emitters, and obtain two main results, both ascribable to the presence of evanescent fields. First, the excitation profile of the emitter states is a sinusoidal wave. Second, we discuss the emergence of multimers, consisting in subsets of emitters separated by two lattice spacings in which the electromagnetic field is approximately vanishing
Polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength
We report the realization of a fiber coupled polarization entangled
photon-pair source at 1310 nm based on a birefringent titanium in-diffused
waveguide integrated on periodically poled lithium niobate. By taking advantage
of a dedicated and high-performance setup, we characterized the quantum
properties of the pairs by measuring two-photon interference in both
Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for
the two sets of measurements, interference net visibilities reaching nearly
100%, which represent important and competitive results compared to similar
waveguide-based configurations already reported. These results prove the
relevance of our approach as an enabling technology for long-distance quantum
communication.Comment: 13 pages, 4 figures, to appear in New Journal of Physic
A versatile source of polarisation entangled photons for quantum network applications
We report a versatile and practical approach for generating high-quality
polarization entanglement in a fully guided-wave fashion. Our setup relies on a
high-brilliance type-0 waveguide generator producing paired photon at a telecom
wavelength associated with an advanced energy-time to polarisation transcriber.
The latter is capable of creating any pure polarization entangled state, and
allows manipulating single photon bandwidths that can be chosen at will over
five orders of magnitude, ranging from tens of MHz to several THz. We achieve
excellent entanglement fidelities for particular spectral bandwidths, i.e. 25
MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme
stands as an ideal candidate for a wide range of network applications, ranging
from dense division multiplexing quantum key distribution to heralded optical
quantum memories and repeaters.Comment: 5 figure
Enhanced electron-phonon coupling in graphene with periodically distorted lattice
Electron-phonon coupling directly determines the stability of cooperative
order in solids, including superconductivity, charge and spin density waves.
Therefore, the ability to enhance or reduce electron-phonon coupling by optical
driving may open up new possibilities to steer materials' functionalities,
potentially at high speeds. Here we explore the response of bilayer graphene to
dynamical modulation of the lattice, achieved by driving optically-active
in-plane bond stretching vibrations with femtosecond mid-infrared pulses. The
driven state is studied by two different ultrafast spectroscopic techniques.
Firstly, TeraHertz time-domain spectroscopy reveals that the Drude scattering
rate decreases upon driving. Secondly, the relaxation rate of hot
quasi-particles, as measured by time- and angle-resolved photoemission
spectroscopy, increases. These two independent observations are quantitatively
consistent with one another and can be explained by a transient three-fold
enhancement of the electron-phonon coupling constant. The findings reported
here provide useful perspective for related experiments, which reported the
enhancement of superconductivity in alkali-doped fullerites when a similar
phonon mode was driven.Comment: 12 pages, 4 figure
Scientific teaching targeting faculty from diverse institutions
We offered four annual professional development workshops called STAR (for Scientific Teaching, Assessment, and Resources) modeled after the National Academies Summer Institute (SI) on Undergraduate Education in Biology. In contrast to the SI focus on training faculty from research universities, STAR\u27s target was faculty from community colleges, 2-yr campuses, and public and private research universities. Because of the importance of community colleges and 2-yr institutions as entries to higher education, we wanted to determine whether the SI model can be successfully extended to this broader range of institutions. We surveyed the four cohorts; 47 STAR alumni responded to the online survey. The responses were separated into two groups based on the Carnegie undergraduate instructional program categories, faculty from seven associate\u27s and associate\u27s-dominant institutions (23) and faculty from nine institutions with primarily 4-yr degree programs (24). Both groups expressed the opinion that STAR had a positive impact on teaching, student learning, and engagement. The two groups reported using techniques of formative assessment and active learning with similar frequency. The mix of faculty from diverse institutions was viewed as enhancing the workshop experience. The present analysis indicates that the SI model for training faculty in scientific teaching can successfully be extended to a broad range of higher education institutions. © 2013 C. S. Gregg et al
Various quantum nonlocality tests with a simple 2-photon entanglement source
Nonlocality is a fascinating and counterintuitive aspect of Nature, revealed
by the violation of a Bell inequality. The standard and easiest configuration
in which Bell inequalities can be measured has been proposed by
Clauser-Horne-Shimony-Holt (CHSH). However, alternative nonlocality tests can
also be carried out. In particular, Bell inequalities requiring multiple
measurement settings can provide deeper fundamental insights about quantum
nonlocality as well as offering advantages in the presence of noise and
detection inefficiency. In this article we show how these nonlocality tests can
be performed using a commercially available source of entangled photon pairs.
We report the violation of a series of these nonlocality tests (I3322, I4422
and chained inequalities). With the violation of the chained inequality with 4
settings per side we put an upper limit at 0.49 on the local content of the
states prepared by the source (instead of 0.63 attainable with CHSH). We also
quantify the amount of true randomness that has been created during our
experiment (assuming fair sampling of the detected events).Comment: 8 pages, 5 figure
- …