141 research outputs found

    32 Bin Near-Infrared Time-Multiplexing Detector with Attojoule Single-Shot Energy Resolution

    Full text link
    We present two implementations of photon counting time-multiplexing detectors for near-infrared wavelengths, based on Peltier cooled InGaAs/InP avalanche photo diodes (APDs). A first implementation is motivated by practical considerations using only commercially available components. It features 16 bins, pulse repetition rates of up to 22 kHz and a large range of applicable pulse widths of up to 100 ns. A second implementation is based on rapid gating detectors, permitting deadtimes below 10 ns. This allows one to realize a high dynamic-range 32 bin detector, able to process pulse repetition rates of up to 6 MHz for pulse width of up to 200 ps. Analysis of the detector response at 16.5% detection efficiency, reveals a single-shot energy resolution on the attojoule level.Comment: 7 pages, 7 figure

    MCD and MCPL characterization of luminescent Si(IV) and P(V) tritolylcorroles: the role of coordination number

    Get PDF
    Two triarylcorrole complexes, (hydroxy)[5,10,15-tritolylcorrolato]silicon-(TTC)Si(OH) and (dihydroxy)[5,10,15-tritolylcorrolato]phosphorous-(TTC)P(OH)2, have been investigated by magnetic circular dichroism (MCD) and magnetic circularly polarized luminescence (MCPL). The spectroscopic investigations have been combined with explicit calculation of MCD response through time-dependent density functional theory (TD-DFT) formalism. This has allowed us to better define the role of molecular orbitals in the transitions associated with the Soret and Q bands. Besides and more importantly, MCD has made it possible to follow the titration process of (TTC)Si(OH) in dimethyl sulfoxide (DMSO) solution with NaF and of (TTC)P(OH)2 in dichloromethane solution with alcohols in a complementary and, we dare say, more sensitive way with respect to absorption and fluorescence data. Finally, the MCPL spectra and the ancillary TD-DFT calculations have allowed us to characterize the excited state of (TTC)Si(OH). © 2021 The Authors. Published by American Chemical Society

    Stationary excitation waves and multimerization in arrays of quantum emitters

    Get PDF
    We explore the features of an equally-spaced array of two-level quantum emitters, that can be either natural atoms (or molecules) or artificial atoms, coupled to a field with a single continuous degree of freedom (such as an electromagnetic mode propagating in a waveguide). We investigate the existence and characteristics of bound states, in which a single excitation is shared among the emitters and the field. We focus on bound states in the continuum, occurring in correspondence of excitation energies in which a single excited emitter would decay. We characterize such bound states for an arbitrary number of emitters, and obtain two main results, both ascribable to the presence of evanescent fields. First, the excitation profile of the emitter states is a sinusoidal wave. Second, we discuss the emergence of multimers, consisting in subsets of emitters separated by two lattice spacings in which the electromagnetic field is approximately vanishing

    Polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength

    Get PDF
    We report the realization of a fiber coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated on periodically poled lithium niobate. By taking advantage of a dedicated and high-performance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for the two sets of measurements, interference net visibilities reaching nearly 100%, which represent important and competitive results compared to similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.Comment: 13 pages, 4 figures, to appear in New Journal of Physic

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure

    Enhanced electron-phonon coupling in graphene with periodically distorted lattice

    Get PDF
    Electron-phonon coupling directly determines the stability of cooperative order in solids, including superconductivity, charge and spin density waves. Therefore, the ability to enhance or reduce electron-phonon coupling by optical driving may open up new possibilities to steer materials' functionalities, potentially at high speeds. Here we explore the response of bilayer graphene to dynamical modulation of the lattice, achieved by driving optically-active in-plane bond stretching vibrations with femtosecond mid-infrared pulses. The driven state is studied by two different ultrafast spectroscopic techniques. Firstly, TeraHertz time-domain spectroscopy reveals that the Drude scattering rate decreases upon driving. Secondly, the relaxation rate of hot quasi-particles, as measured by time- and angle-resolved photoemission spectroscopy, increases. These two independent observations are quantitatively consistent with one another and can be explained by a transient three-fold enhancement of the electron-phonon coupling constant. The findings reported here provide useful perspective for related experiments, which reported the enhancement of superconductivity in alkali-doped fullerites when a similar phonon mode was driven.Comment: 12 pages, 4 figure

    Scientific teaching targeting faculty from diverse institutions

    Get PDF
    We offered four annual professional development workshops called STAR (for Scientific Teaching, Assessment, and Resources) modeled after the National Academies Summer Institute (SI) on Undergraduate Education in Biology. In contrast to the SI focus on training faculty from research universities, STAR\u27s target was faculty from community colleges, 2-yr campuses, and public and private research universities. Because of the importance of community colleges and 2-yr institutions as entries to higher education, we wanted to determine whether the SI model can be successfully extended to this broader range of institutions. We surveyed the four cohorts; 47 STAR alumni responded to the online survey. The responses were separated into two groups based on the Carnegie undergraduate instructional program categories, faculty from seven associate\u27s and associate\u27s-dominant institutions (23) and faculty from nine institutions with primarily 4-yr degree programs (24). Both groups expressed the opinion that STAR had a positive impact on teaching, student learning, and engagement. The two groups reported using techniques of formative assessment and active learning with similar frequency. The mix of faculty from diverse institutions was viewed as enhancing the workshop experience. The present analysis indicates that the SI model for training faculty in scientific teaching can successfully be extended to a broad range of higher education institutions. © 2013 C. S. Gregg et al

    Various quantum nonlocality tests with a simple 2-photon entanglement source

    Full text link
    Nonlocality is a fascinating and counterintuitive aspect of Nature, revealed by the violation of a Bell inequality. The standard and easiest configuration in which Bell inequalities can be measured has been proposed by Clauser-Horne-Shimony-Holt (CHSH). However, alternative nonlocality tests can also be carried out. In particular, Bell inequalities requiring multiple measurement settings can provide deeper fundamental insights about quantum nonlocality as well as offering advantages in the presence of noise and detection inefficiency. In this article we show how these nonlocality tests can be performed using a commercially available source of entangled photon pairs. We report the violation of a series of these nonlocality tests (I3322, I4422 and chained inequalities). With the violation of the chained inequality with 4 settings per side we put an upper limit at 0.49 on the local content of the states prepared by the source (instead of 0.63 attainable with CHSH). We also quantify the amount of true randomness that has been created during our experiment (assuming fair sampling of the detected events).Comment: 8 pages, 5 figure
    • …
    corecore