11 research outputs found

    Nature of the Anomalous Size Dependence of Resonance Red Shifts in Ultrafine Plasmonic Nanoparticles

    No full text
    Plasmonic red shifts of nanoparticles are commonly used in imaging technologies to probe the character of local environments, and the understanding of their dependence on size, shape, and surrounding media has therefore become an important target for research. The red shift of plasmon resonances changes character at about 8-10 nm of size for spherical gold nanoparticles-above this value, the red shift progresses linearly with particle size, while below this size, the red shift changes nonlinearly and more strongly with size. Using an atomistic discrete interaction model, we have studied the special properties of the nanoparticle surface layers and discovered its importance for ultrafine plasmonic nanoparticles and their red shifts. We find that the physical origin for the specific properties inherent to the surface layer of atoms near the nanoparticle boundary is related to the anisotropy of the local environment of atoms in this layer by other atoms. The anisotropy changes the conditions for light-induced nonlocal interactions of neighboring atoms with each other and with the incident radiation compared to the atoms located in the particle core with isotropic nearest surroundings by other atoms. The local anisotropy of the nanoparticle crystal lattice is a geometric factor that increases toward its boundary and that is the most fundamental factor underlying the physical differences between the nanoparticle surface layer and the core material. It is shown that the inflexion point at 8-10 nm is due to a change in the dominant physical origin of the red shift -from chaotization of atomically light-induced dipoles within the surface layer in the case of ultrafine nanoparticles to retardation effects for large nanoparticles in which the relative volume of the surface layer decreases rapidly to a negligible value with increasing nanoparticle size. The patterns revealed are the basis for predicting the manifestation of surface layer effects in ultrafine plasmonic nanoparticles of different and of different materials

    Superatom Molecular Orbitals of Endohedral C<sub>82</sub>

    No full text
    Understanding superatom molecular orbital (SAMO) states in fullerene derivatives has been in the limelight ever since the first discovery of SAMOs owing to the fundamental interest in this topic as well as to the possible applications in molecular switches and other organic electronics. Nevertheless, very few reports have been published on SAMO states of larger fullerenes so far. Using density functional theory, we attempt to partially remedy this situation by presenting a study on SAMO states in C82 and its Ca and Sc endohedrally doped derivatives, comparing results with previous relevant findings for C60. We find that C82 possesses higher SAMO energies compared to C60, as associated with the symmetry of the molecule, and that endohedral doping leads to energetically favorable side positions of Ca and Sc inside the C82 cage. Among the two, Sc@C82 has more stable SAMO states compared to Ca@C82 as reflected by the shift in the density of states, while the charge states are found to be similar. In the case of the monolayer form, the pz- and 2s-SAMO orbitals overlap with the nearest neighbors, causing parabolic band dispersion with the formation of near free electron states and that the SAMO state energies move closer to the Fermi energy compared to the related molecules. These findings provide promising information about the distribution of SAMO states in C82 fullerene, which can be further relevant in studies of SAMO states of higher fullerenes and for coming applications of these systems

    Hydrogen bond effects in multimode nuclear dynamics of acetic acid observed via resonant x-ray scattering

    No full text
    A theoretical and experimental study of the gas phase and liquid acetic acid based on resonant inelastic x-ray scattering (RIXS) spectroscopy is presented. We combine and compare different levels of theory for an isolated molecule for a comprehensive analysis, including electronic and vibrational degrees of freedom. The excitation energy scan over the oxygen K-edge absorption reveals nuclear dynamic effects in the core-excited and final electronic states. The theoretical simulations for the monomer and two different forms of the dimer are compared against high-resolution experimental data for pure liquid acetic acid. We show that the theoretical model based on a dimer describes the hydrogen bond formation in the liquid phase well and that this bond formation sufficiently alters the RIXS spectra, allowing us to trace these effects directly from the experiment. Multimode vibrational dynamics is accounted for in our simulations by using a hybrid time-dependent stationary approach for the quantum nuclear wave packet simulations, showing the important role it plays in RIXS

    Vibrational resonant inelastic X-ray scattering in liquid acetic acid : a ruler for molecular chain lengths

    Get PDF
    Quenching of vibrational excitations in resonant inelastic X-ray scattering (RIXS) spectra of liquid acetic acid is observed. At the oxygen core resonance associated with localized excitations at the O-H bond, the spectra lack the typical progression of vibrational excitations observed in RIXS spectra of comparable systems. We interpret this phenomenon as due to strong rehybridization of the unoccupied molecular orbitals as a result of hydrogen bonding, which however cannot be observed in x-ray absorption but only by means of RIXS. This allows us to address the molecular structure of the liquid, and to determine a lower limit for the average molecular chain length
    corecore