230 research outputs found

    Establishing Applicability of SSDs to LHC Tier-2 Hardware Configuration

    Get PDF
    Solid State Disk technologies are increasingly replacing high-speed hard disks as the storage technology in high-random-I/O environments. There are several potentially I/O bound services within the typical LHC Tier-2 - in the back-end, with the trend towards many-core architectures continuing, worker nodes running many single-threaded jobs and storage nodes delivering many simultaneous files can both exhibit I/O limited efficiency. We estimate the effectiveness of affordable SSDs in the context of worker nodes, on a large Tier-2 production setup using both low level tools and real LHC I/O intensive data analysis jobs comparing and contrasting with high performance spinning disk based solutions. We consider the applicability of each solution in the context of its price/performance metrics, with an eye on the pragmatic issues facing Tier-2 provision and upgradesComment: 6 pages, 1 figure, 4 tables. Conference proceedings for CHEP201

    Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Get PDF
    Herein, the generation of gold, silver, and silver–gold (Ag–Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV–visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device

    Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters

    Get PDF
    General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones

    β-Adrenergic Inhibition of Contractility in L6 Skeletal Muscle Cells

    Get PDF
    The β-adrenoceptors (β-ARs) control many cellular processes. Here, we show that β-ARs inhibit calcium depletion-induced cell contractility and subsequent cell detachment of L6 skeletal muscle cells. The mechanism underlying the cell detachment inhibition was studied by using a quantitative cell detachment assay. We demonstrate that cell detachment induced by depletion of extracellular calcium is due to myosin- and ROCK-dependent contractility. The β-AR inhibition of L6 skeletal muscle cell detachment was shown to be mediated by the β2-AR and increased cAMP but was surprisingly not dependent on the classical downstream effectors PKA or Epac, nor was it dependent on PKG, PI3K or PKC. However, inhibition of potassium channels blocks the β2-AR mediated effects. Furthermore, activation of potassium channels fully mimicked the results of β2-AR activation. In conclusion, we present a novel finding that β2-AR signaling inhibits contractility and thus cell detachment in L6 skeletal muscle cells by a cAMP and potassium channel dependent mechanism

    Phosphorylation of p130Cas initiates Rac activation and membrane ruffling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-receptor tyrosine kinases (NTKs) regulate physiological processes such as cell migration, differentiation, proliferation, and survival by interacting with and phosphorylating a large number of substrates simultaneously. This makes it difficult to attribute a particular biological effect to the phosphorylation of a particular substrate. We developed the Functional Interaction Trap (FIT) method to phosphorylate specifically a single substrate of choice in living cells, thereby allowing the biological effect(s) of that phosphorylation to be assessed. In this study we have used FIT to investigate the effects of specific phosphorylation of p130Cas, a protein implicated in cell migration. We have also used this approach to address a controversy regarding whether it is Src family kinases or focal adhesion kinase (FAK) that phosphorylates p130Cas in the trimolecular Src-FAK-p130Cas complex.</p> <p>Results</p> <p>We show here that SYF cells (mouse fibroblasts lacking the NTKs Src, Yes and Fyn) exhibit a low level of basal tyrosine phosphorylation at focal adhesions. FIT-mediated tyrosine phosphorylation of NTK substrates p130Cas, paxillin and FAK and cortactin was observed at focal adhesions, while FIT-mediated phosphorylation of cortactin was also seen at the cell periphery. Phosphorylation of p130Cas in SYF cells led to activation of Rac1 and increased membrane ruffling and lamellipodium formation, events associated with cell migration. We also found that the kinase activity of Src and not FAK is essential for phosphorylation of p130Cas when the three proteins exist as a complex in focal adhesions.</p> <p>Conclusion</p> <p>These results demonstrate that tyrosine phosphorylation of p130Cas is sufficient for its localization to focal adhesions and for activation of downstream signaling events associated with cell migration. FIT provides a valuable tool to evaluate the contribution of individual components of the response to signals with multiple outputs, such as activation of NTKs.</p

    The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation

    Get PDF
    Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces

    Ecological Meltdown in the Firth of Clyde, Scotland: Two Centuries of Change in a Coastal Marine Ecosystem

    Get PDF
    BACKGROUND: The Firth of Clyde is a large inlet of the sea that extends over 100 km into Scotland\u27s west coast. METHODS: We compiled detailed fisheries landings data for this area and combined them with historical accounts to build a picture of change due to fishing activity over the last 200 years. FINDINGS: In the early 19th century, prior to the onset of industrial fishing, the Firth of Clyde supported diverse and productive fisheries for species such as herring (Clupea harengus, Clupeidae), cod (Gadus morhua, Gadidae), haddock (Melanogrammus aeglefinus, Gadidae), turbot (Psetta maxima, Scophthalmidae) and flounder (Platichthys flesus, Pleuronectidae). The 19th century saw increased demand for fish, which encouraged more indiscriminate methods of fishing such as bottom trawling. During the 1880s, fish landings began to decline, and upon the recommendation of local fishers and scientists, the Firth of Clyde was closed to large trawling vessels in 1889. This closure remained in place until 1962 when bottom trawling for Norway lobster (Nephrops norvegicus, Nephropidae) was approved in areas more than three nautical miles from the coast. During the 1960s and 1970s, landings of bottomfish increased as trawling intensified. The trawl closure within three nautical miles of the coast was repealed in 1984 under pressure from the industry. Thereafter, bottomfish landings went into terminal decline, with all species collapsing to zero or near zero landings by the early 21st century. Herring fisheries collapsed in the 1970s as more efficient mid-water trawls and fish finders were introduced, while a fishery for mid-water saithe (Pollachius virens, Gadidae) underwent a boom and bust shortly after discovery in the late 1960s. The only commercial fisheries that remain today are for Nephrops and scallops (Pecten maximus, Pectinidae). SIGNIFICANCE: The Firth of Clyde is a marine ecosystem nearing the endpoint of overfishing, a time when no species remain that are capable of sustaining commercial catches. The evidence suggests that trawl closures helped maintain productive fisheries through the mid-20th century, and their reopening precipitated collapse of bottomfish stocks. We argue that continued intensive bottom trawling for Nephrops with fine mesh nets will prevent the recovery of other species. This once diverse and highly productive environment will only be restored if trawl closures or other protected areas are re-introduced. The Firth of Clyde represents at a small scale a process that is occurring ocean-wide today, and its experience serves as a warning to others
    corecore