63 research outputs found

    Diabetic pancreatic β cells ARNT all they should be

    Get PDF
    A complex network of interacting transcription factors plays a critical role in normal pancreatic β cell function, with mutations in certain transcription factor genes known to cause diabetes. In a recent issue of Cell, Gunton et al. (2005) demonstrate a role for the transcription factor ARNT/HIF1β (hydrocarbon nuclear receptor translocator/hypoxia-inducible factor 1 β) in normal β cell function. ARNT expression is reduced in diabetic human islets and β cell-specific ARNT knockout mice show the impaired glucose tolerance and abnormal insulin secretion that are characteristic of type 2 diabetes

    Maturity-onset diabetes of the young

    Full text link
    Maturity-onset diabetes of the young (MODY) is a subtype of noninsulin dependent diabetes mellitus (NIDDM). It is characterized by an early age of onset and autosomal dominant mode of inheritance. These features and the availability of large multigenerational pedigrees make MODY useful for genetic studies of diabetes. In the large, 5-generational RW pedigree, MODY is tightly linked to genetic markers on chromosome 20q. Affected subjects in this family show abnormalities of carbohydrate metabolism varying from impaired glucose tolerance (IGT) to severe diabetes. Approximately 30% of diabetic subjects become insulin requiring and vascular complications occur. MODY is also linked to the glucokinase gene on chromosome 7p and many different mutations associated with MODY have been identified in this gene. MODY due to mutations in the glucokinase gene is a relatively mild form of diabetes with mild fasting hyperglycemia and IGT in the majority. It is rarely insulin requiring and rarely has vascular complications. Clinical studies indicate that the genetic or primary defect in MODY is characterized by deranged and deficient insulin secretion and not by insulin resistance and that there are quantitative and qualitative differences in insulin secretory defects which differentiate subjects with MODY due to glucokinase mutations from those with mutations in the gene on chromosome 20q. These differences correlate with the severity of diabetes between these two genetic forms of MODY.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31930/1/0000883.pd

    Calpain system regulates muscle mass and glucose transporter GLUT4 turnover

    Get PDF
    The experiments in this study were undertaken to determine whether inhibition of calpain activity in skeletal muscle is associated with alterations in muscle metabolism. Transgenic mice that overexpress human calpastatin, an endogenous calpain inhibitor, in skeletal muscle were produced. Compared with wild type controls, muscle calpastatin mice demonstrated normal glucose tolerance. Levels of the glucose transporter GLUT4 were increased more than 3-fold in the transgenic mice by Western blotting while mRNA levels for GLUT4 and myocyte enhancer factors, MEF 2A and MEF 2D, protein levels were decreased. We found that GLUT4 can be degraded by calpain-2, suggesting that diminished degradation is responsible for the increase in muscle GLUT4 in the calpastatin transgenic mice. Despite the increase in GLUT4, glucose transport into isolated muscles from transgenic mice was not increased in response to insulin. The expression of protein kinase B was decreased by approximately 60% in calpastatin transgenic muscle. This decrease could play a role in accounting for the insulin resistance relative to GLUT4 content of calpastatin transgenic muscle. The muscle weights of transgenic animals were substantially increased compared with controls. These results are consistent with the conclusion that calpain-mediated pathways play an important role in the regulation of GLUT4 degradation in muscle and in the regulation of muscle mass. Inhibition of calpain activity in muscle by overexpression of calpastatin is associated with an increase in GLUT4 protein without a proportional increase in insulin-stimulated glucose transport. These findings provide evidence for a physiological role for calpains in the regulation of muscle glucose metabolism and muscle mass

    Complex Patterns of Metabolic and Ca<sup>2+</sup> Entrainment in Pancreatic Islets by Oscillatory Glucose

    Get PDF
    Glucose-stimulated insulin secretion is pulsatile and driven by intrinsic oscillations in metabolism, electrical activity, and Ca(2+) in pancreatic islets. Periodic variations in glucose can entrain islet Ca(2+) and insulin secretion, possibly promoting interislet synchronization. Here, we used fluorescence microscopy to demonstrate that glucose oscillations can induce distinct 1:1 and 1:2 entrainment of oscillations (one and two oscillations for each period of exogenous stimulus, respectively) in islet Ca(2+), NAD(P)H, and mitochondrial membrane potential. To our knowledge, this is the first demonstration of metabolic entrainment in islets, and we found that entrainment of metabolic oscillations requires voltage-gated Ca(2+) influx. We identified diverse patterns of 1:2 entrainment and showed that islet synchronization during entrainment involves adjustments of both oscillatory phase and period. All experimental findings could be recapitulated by our recently developed mathematical model, and simulations suggested that interislet variability in 1:2 entrainment patterns reflects differences in their glucose sensitivity. Finally, our simulations and recordings showed that a heterogeneous group of islets synchronized during 1:2 entrainment, resulting in a clear oscillatory response from the collective. In summary, we demonstrate that oscillatory glucose can induce complex modes of entrainment of metabolically driven oscillations in islets, and provide additional support for the notion that entrainment promotes interislet synchrony in the pancreas

    Complex Patterns of Metabolic and Ca<sup>2+</sup> Entrainment in Pancreatic Islets by Oscillatory Glucose

    Get PDF
    Glucose-stimulated insulin secretion is pulsatile and driven by intrinsic oscillations in metabolism, electrical activity, and Ca(2+) in pancreatic islets. Periodic variations in glucose can entrain islet Ca(2+) and insulin secretion, possibly promoting interislet synchronization. Here, we used fluorescence microscopy to demonstrate that glucose oscillations can induce distinct 1:1 and 1:2 entrainment of oscillations (one and two oscillations for each period of exogenous stimulus, respectively) in islet Ca(2+), NAD(P)H, and mitochondrial membrane potential. To our knowledge, this is the first demonstration of metabolic entrainment in islets, and we found that entrainment of metabolic oscillations requires voltage-gated Ca(2+) influx. We identified diverse patterns of 1:2 entrainment and showed that islet synchronization during entrainment involves adjustments of both oscillatory phase and period. All experimental findings could be recapitulated by our recently developed mathematical model, and simulations suggested that interislet variability in 1:2 entrainment patterns reflects differences in their glucose sensitivity. Finally, our simulations and recordings showed that a heterogeneous group of islets synchronized during 1:2 entrainment, resulting in a clear oscillatory response from the collective. In summary, we demonstrate that oscillatory glucose can induce complex modes of entrainment of metabolically driven oscillations in islets, and provide additional support for the notion that entrainment promotes interislet synchrony in the pancreas

    Introduction of Arthur H. Rubenstein

    No full text
    • …
    corecore