829 research outputs found

    Purcell factor enhanced scattering efficiency in optical microcavities

    Get PDF
    Scattering processes in an optical microcavity are investigated for the case of silicon nanocrystals embedded in an ultra-high Q toroid microcavity. Using a novel measurement technique based on the observable mode-splitting, we demonstrate that light scattering is highly preferential: more than 99.8% of the scattered photon flux is scattered into the original doubly-degenerate cavity modes. The large capture efficiency is attributed to an increased scattering rate into the cavity mode, due to the enhancement of the optical density of states over the free space value and has the same origin as the Purcell effect in spontaneous emission. The experimentally determined Purcell factor amounts to 883

    Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation

    Get PDF
    Si nanocrystals (diameter 2–5 nm) were formed by 35 keV Si + implantation at a fluence of 6 × 1016 Si/cm2 into a 100 nm thick thermally grown SiO2 film on Si (100), followed by thermal annealing at 1100 °C for 10 min. The nanocrystals show a broad photoluminescence spectrum, peaking at 880 nm, attributed to the recombination of quantum confined excitons. Rutherford backscattering spectrometry and transmission electron microscopy show that annealing these samples in flowing O2 at 1000 °C for times up to 30 min results in oxidation of the Si nanocrystals, first close to the SiO2 film surface and later at greater depths. Upon oxidation for 30 min the photoluminescence peak wavelength blueshifts by more than 200 nm. This blueshift is attributed to a quantum size effect in which a reduction of the average nanocrystal size leads to emission at shorter wavelengths. The room temperature luminescence lifetime measured at 700 nm increases from 12 ”s for the unoxidized film to 43 ”s for the film that was oxidized for 29 min

    Graphene plasmonics: A platform for strong light-matter interaction

    Get PDF
    Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much larger confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. We report strong light- matter interaction assisted by graphene plasmons, and in particular, we predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, large vacuum Rabi splitting and Purcell factors, and extinction cross sections exceeding the geometrical area in graphene ribbons and nanometer-sized disks. Our results provide the basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum electrodynamics and supporting the possibility of single-molecule, single-plasmon devices.Comment: 39 pages, 15 figure

    DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    Full text link
    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure

    Optical Excitations and Field Enhancement in Short Graphene Nanoribbons

    Full text link
    The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semi-empirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake, and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries

    A search for new MRI criteria for dissemination in space in subjects with a clinically isolated syndrome

    Get PDF
    The International Panel on the Diagnosis of Multiple Sclerosis (MS) incorporated the Barkhof/Tintoré (B/T) magnetic resonance criteria into their diagnostic scheme to provide evidence of dissemination in space of central nervous system lesions, a prerequisite for diagnosing MS in patients who present with clinically isolated syndromes (CIS). Although specific for MS, the B/T criteria were criticised for their low sensitivity and relative complexity in clinical use. We used lesion characteristics at onset from 349 CIS patients in logistic regression and recursive partitioning modelling in a search for simpler and more sensitive criteria, while maintaining current specificity. The resulting models, all based on the presence of periventricular and deep white matter lesions, performed roughly in agreement with the B/T criteria, but were unable to provide higher diagnostic accuracy based on information from a single scan. Apparently, findings from contrast-enhanced and follow-up magnetic resonance scans are needed to improve the diagnostic algorithm

    Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography

    Get PDF
    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C

    Treatment of refractory epilepsy with natalizumab in a patient with multiple sclerosis. Case report

    Get PDF
    Background. Multiple sclerosis (MS) is considered an autoimmune disease of the central nervous system and therapeutic inhibition of leukocyte migration with natalizumab, an anti-alpha4 integrin antibody, is highly effective in patients with MS. Recent studies performed in experimental animal models with relevance to human disease suggested a key role for blood-brain barrier damage and leukocyte trafficking mechanisms also in the pathogenesis of epilepsy. In addition, vascular alterations and increased leukocyte accumulation into the brain were recently documented in patients with refractory epilepsy independently on the disease etiology. Case report. Here we describe the clinical course of a 24-year-old patient with MS in whom abrupt tonic-clonic generalized seizures manifested at disease onset. Although MS had a more favorable course, treatment with glatiramer acetate and antiepileptic drugs for 7 years had no control on seizure generation and the patient developed severe refractory epilepsy. Interestingly, generalized seizures preceded new MS relapses suggesting that seizure activity may contribute to MS worsening creating a positive feedback loop between the two disease conditions. Notably, treatment with natalizumab for 12 months improved MS condition and led to a dramatic reduction of seizures. Conclusion. Our case report suggests that inhibition of leukocyte adhesion may represent a new potential therapeutic approach in epilepsy and complement the traditional therapy with anti-epileptic drugs
    • 

    corecore