164 research outputs found

    The Hermeneutics Of The Hard Drive: Using Narratology, Natural Language Processing, And Knowledge Management To Improve The Effectiveness Of The Digital Forensic Process

    Get PDF
    In order to protect the safety of our citizens and to ensure a civil society, we ask our law enforcement, judiciary and intelligence agencies, under the rule of law, to seek probative information which can be acted upon for the common good. This information may be used in court to prosecute criminals or it can be used to conduct offensive or defensive operations to protect our national security. As the citizens of the world store more and more information in digital form, and as they live an ever-greater portion of their lives online, law enforcement, the judiciary and the Intelligence Community will continue to struggle with finding, extracting and understanding the data stored on computers. But this trend affords greater opportunity for law enforcement. This dissertation describes how several disparate approaches: knowledge management, content analysis, narratology, and natural language processing, can be combined in an interdisciplinary way to positively impact the growing difficulty of developing useful, actionable intelligence from the ever-increasing corpus of digital evidence. After exploring how these techniques might apply to the digital forensic process, I will suggest two new theoretical constructs, the Hermeneutic Theory of Digital Forensics and the Narrative Theory of Digital Forensics, linking existing theories of forensic science, knowledge management, content analysis, narratology, and natural language processing together in order to identify and extract narratives from digital evidence. An experimental approach will be described and prototyped. The results of these experiments demonstrate the potential of natural language processing techniques to digital forensics

    A Framework for Harmonizing Forensic Science Practices and Digital/Multimedia Evidence

    Get PDF
    Like many other specializations within forensic science, the digital/multimedia discipline has been challenged with respect to demonstrating that the processes, activities, and techniques used are sufficiently scientific. To address this issue, in April 2015, the Organization of Scientific Area Committees for Forensic Science (OSAC) Digital/Multimedia Scientific Area Committee (SAC) established a Task Group (TG). This document summarizes the work of the TG that grew into establishing a harmonizing framework for forensic science practices and digital/multimedia evidence. The TG researched and deliberated on the essential elements of digital/multimedia science, the nature of evidence examined, the overarching scientific principles and reasoning processes, the questions addressed by core forensic processes, and the activities and techniques which support the core forensic processes. It reviewed a large volume of pertinent literature, conducted interviews of practitioners, academics, and other interested parties. Over a three-year period and many hours of debate, more than 40 discussion drafts were produced. The TG determined that digital/multimedia evidence, and other forensic disciplines, would be in a much stronger position to demonstrate their scientific basis as a harmonized forensic science rather than as mere disciplines at the intersection of forensic specialties and other sciences. The value of forensic science as a whole is that it uses scientific reasoning and processes within the framework articulated in this document to address questions – specific to an event or a case – for legal contexts, to provide decision-makers with trustworthy understanding of the traces in order to help them make decisions. The TG considered how the definitions and framework developed in the context of digital/multimedia evidence mesh with forensic science as a whole. The present document describes the concept of traces as the core nature of forensic evidence and the fundamental object of study in forensic science. It proposes a broad definition of forensic science, not limited to legal problems in civil and criminal justice systems (courtroom contexts), and describes the different types of reasoning that play a significant role in forensic science. Then it defines five core forensic processes, seven forensic activities, and three operational techniques. The formalization of forensic science reasoning processes and outcomes in this work leads to increased reliability, repeatability, and validation in forensic results. This, in turn, gives decision-makers increased confidence in and understanding of forensic results. The resulting definitions and framework can be used to harmonize concepts and practices within digital/multimedia science, and are likely applicable to most forensic disciplines. As such, this work may be useful in articulating their scientific basis, and promoting forensic science as one science, which is more than the union of a patchwork of forensic disciplines. The new paradigm created by the digital realm brings a unique opportunity to revisit fundamental definitions in forensic science and to strengthen the identity of forensic science as a whole, unified by common principles and processes that can address questions for legal contexts. This document represents the conclusions and recommendations of the TG as of the date of its writing. The work continues and future versions of this document can be expected to contain new observations and updated conclusions

    Trace Metal Exposure is Associated with Increased Exhaled Nitric Oxide in Asthmatic Children

    Get PDF
    Background Children with asthma experience increased susceptibility to airborne pollutants. Exposure to traffic and industrial activity have been positively associated with exacerbation of symptoms as well as emergency room visits and hospitalisations. The effect of trace metals contained in fine particulate matter (aerodynamic diameter 2.5 μm and lower, PM2.5) on acute health effects amongst asthmatic children has not been well investigated. The objective of this panel study in asthmatic children was to determine the association between personal daily exposure to ambient trace metals and airway inflammation, as measured by fractional exhaled nitric oxide (FeNO). Methods Daily concentrations of trace metals contained on PM2.5 were determined from personal samples (n = 217) collected from 70 asthmatic school aged children in Montreal, Canada, over ten consecutive days. FeNO was measured daily using standard techniques. Results A positive association was found between FeNO and children’s exposure to an indicator of vehicular non-tailpipe emissions (8.9 % increase for an increase in the interquartile range (IQR) in barium, 95 % confidence interval (CI): 2.8, 15.4) as well as exposure to an indicator of industrial emissions (7.6 % increase per IQR increase in vanadium, 95 % CI: 0.1, 15.8). Elevated FeNO was also suggested for other metals on the day after the exposure: 10.3 % increase per IQR increase in aluminium (95 % CI: 4.2, 16.6) and 7.5 % increase per IQR increase in iron (95 % CI: 1.5, 13.9) at a 1-day lag period. Conclusions Exposures to ambient PM2.5 containing trace metals that are markers of traffic and industrial-derived emissions were associated in asthmatic children with an enhanced FeNO response

    Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma

    Get PDF
    Background: Epidemiological studies have provided strong evidence that fine particulate matter (PM2.5; aerodynamic diameter ≤ 2.5 μm) can exacerbate asthmatic symptoms in children. Pro-oxidant components of PM2.5 are capable of directly generating reactive oxygen species. Oxidative burden is used to describe the capacity of PM2.5 to generate reactive oxygen species in the lung. Objective: In this study we investigated the association between airway inflammation in asthmatic children and oxidative burden of PM2.5 personal exposure. Methods: Daily PM2.5 personal exposure samples (n = 249) of 62 asthmatic school-aged children in Montreal were collected over 10 consecutive days. The oxidative burden of PM2.5 samples was determined in vitro as the depletion of low-molecular-weight antioxidants (ascorbate and glutathione) from a synthetic model of the fluid lining the respiratory tract. Airway inflammation was measured daily as fractional exhaled nitric oxide (FeNO). Results: A positive association was identified between FeNO and glutathione-related oxidative burden exposure in the previous 24 hr (6.0% increase per interquartile range change in glutathione). Glutathione-related oxidative burden was further found to be positively associated with FeNO over 1-day lag and 2-day lag periods. Results further demonstrate that corticosteroid use may reduce the FeNO response to elevated glutathione-related oxidative burden exposure (no use, 15.8%; irregular use, 3.8%), whereas mold (22.1%), dust (10.6%), or fur (13.1%) allergies may increase FeNO in children with versus children without these allergies (11.5%). No association was found between PM2.5 mass or ascorbate-related oxidative burden and FeNO levels. Conclusions: Exposure to PM2.5 with elevated glutathione-related oxidative burden was associated with increased FeNO

    Customer Focus in European Higher Education Systems

    Get PDF
    This article looks at the idea and practice of “customer focus” in higher education. As a global trend with origins in the business and corporate world, customer focus has come to increasingly shape public services worldwide. Influenced by business thinking, terminology, and practices, governmental organizations across policy areas have used customer focus to reform public services in order to bring them closer to the demands and expectations of their users. The paper particularly analyzes changes in customer focus understanding and its implications for the European higher education policies. The aim of the article is to contribute to a better conceptualization and policy understanding of this growing approach to higher education reform.fi=vertaisarvioitu|en=peerReviewed

    Net emission reductions from electric cars and heat pumps in 59 world regions over time

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.Data availability: The data that support the findings of this study are available from the corresponding authors on reasonable request.Code availability: The computer code used to generate results that are reported in this study are available from the corresponding authors on reasonable request.Electrification of passenger road transport and household heating features prominently in current and planned policy frameworks to achieve greenhouse gas emissions reduction targets. However, since electricity generation involves using fossil fuels, it is not established where and when the replacement of fossil fuel-based technologies by1 electric cars and heat pumps can effectively reduce overall emissions. Could electrification policy backfire by promoting their diffusion before electricity is decarbonised? Here, we analyse current and future emissions trade-offs in 59 world regions with heterogeneous households, by combining forward-looking integrated assessment model simulations with bottom-up life-cycle assessment. We show that already under current carbon intensities of electricity generation, electric cars and heat pumps are less emission-intensive than fossil fuel-based alternatives in 53 world regions, representing 95% of global transport and heating demand. Even if future end19 use electrification is not matched by rapid power sector decarbonisation, it likely avoids emissions in world regions representing 94% of global demand.Engineering and Physical Sciences Research Council (EPSRC)Newton FundEuropean Research Council (ERC)European Union Horizon 2020European Commissio

    Transforming U.S. agriculture with crushed rock for CO2_2 sequestration and increased production

    Full text link
    Enhanced weathering (EW) is a promising modification to current agricultural practices that uses crushed silicate rocks to drive carbon dioxide removal (CDR). If widely adopted on farmlands, it could help achieve net-zero or negative emissions by 2050. We report detailed state-level analysis indicating EW deployed on agricultural land could sequester 0.23-0.38 Gt CO2_2 yr1^{-1} and meet 36-60 % of U.S. technological CDR goals. Average CDR costs vary between state, being highest in the first decades before declining to a range of $\sim\$100-150 tCO21_2{}^{-1} by 2050, including for three states (Iowa, Illinois, and Indiana) that contribute most to total national CDR. We identify multiple electoral swing states as being essential for scaling EW that are also key beneficiaries of the practice, indicating the need for strong bipartisan support of this technology. Assessment the geochemical capacity of rivers and oceans to carry dissolved EW products from soil drainage suggests EW provides secure long-term CO2_2 removal on intergenerational time scales. We additionally forecast mitigation of ground-level ozone increases expected with future climate change, as an indirect benefit of EW, and consequent avoidance of yield reductions. Our assessment supports EW as a practical innovation for leveraging agriculture to enable positive action on climate change with adherence to federal environmental justice priorities. However, implementing a stage-gating framework as upscaling proceeds to safeguard against environmental and biodiversity concerns will be essential

    Cardiovascular inflammation in healthy women: multilevel associations with state-level prosperity, productivity and income inequality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular inflammation is a key contributor to the development of atherosclerosis and the prediction of cardiovascular events among healthy women. An emerging literature suggests biomarkers of inflammation vary by geography of residence at the state-level, and are associated with individual-level socioeconomic status. Associations between cardiovascular inflammation and state-level socioeconomic conditions have not been evaluated. The study objective is to estimate whether there are independent associations between state-level socioeconomic conditions and individual-level biomarkers of inflammation, in excess of individual-level income and clinical covariates among healthy women.</p> <p>Methods</p> <p>The authors examined cross-sectional multilevel associations among state-level socioeconomic conditions, individual-level income, and biomarkers of inflammation among women (n = 26,029) in the Women's Health Study, a nation-wide cohort of healthy women free of cardiovascular diseases at enrollment. High sensitivity C-reactive protein (hsCRP), soluble intercellular adhesion molecule-1 (sICAM-1) and fibrinogen were measured between 1993 and 1996. Biomarker levels were examined among women within quartiles of state-level socioeconomic conditions and within categories of individual-level income.</p> <p>Results</p> <p>The authors found that favorable state-level socioeconomic conditions were correlated with lower hsCRP, in excess of individual-level income (e.g. state-level real per capital gross domestic product fixed effect standardized Βeta coefficient [Std B] -0.03, 95% CI -0.05, -0.004). Individual-level income was more closely associated with sICAM-1 (Std B -0.04, 95% CI -0.06, -0.03) and fibrinogen (Std B -0.05, 95% CI -0.06, -0.03) than state-level conditions.</p> <p>Conclusions</p> <p>We found associations between state-level socioeconomic conditions and hsCRP among healthy women. Personal household income was more closely associated with sICAM-1 and fibrinogen than state-level socioeconomic conditions. Additional research should examine these associations in other cohorts, and investigate what more-advantaged states do differently than less-advantaged states that may influence levels of cardiovascular inflammation among healthy women.</p
    corecore