10 research outputs found

    Responsible modelling : unit testing for infectious disease epidemiology

    Get PDF
    Infectious disease epidemiology is increasingly reliant on large-scale computation and inference. Models have guided health policy for epidemics including COVID-19 and Ebola and endemic diseases including malaria and tuberculosis. Yet a coding bug may bias results, yielding incorrect conclusions and actions causing avoidable harm. We are ethically obliged to make our code as free of error as possible. Unit testing is a coding method to avoid such bugs, but it is rarely used in epidemiology. We demonstrate how unit testing can handle the particular quirks of infectious disease models and aim to increase uptake of this methodology in our field

    Contact tracing is an imperfect tool for controlling COVID-19 transmission and relies on population adherence.

    Get PDF
    Emerging evidence suggests that contact tracing has had limited success in the UK in reducing the R number across the COVID-19 pandemic. We investigate potential pitfalls and areas for improvement by extending an existing branching process contact tracing model, adding diagnostic testing and refining parameter estimates. Our results demonstrate that reporting and adherence are the most important predictors of programme impact but tracing coverage and speed plus diagnostic sensitivity also play an important role. We conclude that well-implemented contact tracing could bring small but potentially important benefits to controlling and preventing outbreaks, providing up to a 15% reduction in R. We reaffirm that contact tracing is not currently appropriate as the sole control measure

    Dynamics of SARS-CoV-2 with waning immunity in the UK population.

    Get PDF
    The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than 1 year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalized individuals, a year for hospitalized individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst-case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387 000 infectious individuals and 125 000 daily new cases; threefold greater than in a scenario with permanent immunity. Our models suggest that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer-term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'

    An imperfect tool: contact tracing could provide valuable reductions in COVID-19 transmission if good adherence can be achieved and maintained.

    Get PDF
    Emerging evidence suggests that contact tracing has had limited success in the UK in reducing the R number across the COVID-19 pandemic. We investigate potential pitfalls and areas for improvement by extending an existing branching process contact tracing model, adding diagnostic testing and refining parameter estimates. Our results demonstrate that reporting and adherence are the most important predictors of programme impact but tracing coverage and speed plus diagnostic sensitivity also play an important role. We conclude that well-implemented contact tracing could bring small but potentially important benefits to controlling and preventing outbreaks, providing up to a 15% reduction in R, and reaffirm that contact tracing is not currently appropriate as the sole control measure.</jats:p

    How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases.

    Get PDF
    The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals , an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the insights, the resulting recommendations and identified challenges of public health modelling for 13 of the target diseases: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH), Taenia solium taeniasis/ cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws. This piece reflects the three cross-cutting themes identified across the collection, regarding the contribution that modelling can make to timelines, programme design, drug development and clinical trials

    t-pollington/developments_tau_statistic

    No full text
    Code analysis for "Developments in statistical inference when assessing spatiotemporal disease clustering with the tau statistic" Pollington et al

    Impact of intensified control on visceral leishmaniasis in a highly-endemic district of Bihar, India: an interrupted time series analysis.

    Get PDF
    Visceral leishmaniasis (VL) is declining in India and the World Health Organization's (WHO) 2020 'elimination as a public health problem' target has nearly been achieved. Intensified combined interventions might help reach elimination, but their impact has not been assessed. WHO's Neglected Tropical Diseases 2021-2030 roadmap provides an opportunity to revisit VL control strategies. We estimated the combined effect of a district-wide pilot of intensified interventions in the highly-endemic Vaishali district, where cases fell from 3,598 in 2012-2014 to 762 in 2015-2017. The intensified control approach comprised indoor residual spraying with improved supervision; VL-specific training for accredited social health activists to reduce onset-to-diagnosis time; and increased Information Education & Communication activities in the community. We compared the rate of incidence decrease in Vaishali to other districts in Bihar state via an interrupted time series analysis with a spatiotemporal model informed by previous VL epidemiological estimates. Changes in Vaishali's rank among Bihar's endemic districts in terms of monthly incidence showed a change pre-pilot (3rd highest out of 33 reporting districts) vs. during the pilot (9th) (p<1e-10). The rate of decline in Vaishali's incidence saw no change in rank at 11th highest, both pre-pilot & during the pilot. Counterfactual model simulations suggest an estimated median of 352 cases (IQR 234-477) were averted by the Vaishali pilot between January 2015 and December 2017, which was robust to modest changes in the onset-to-diagnosis distribution. Strengthening control strategies may have precipitated a substantial change in VL incidence in Vaishali and suggests this approach should be piloted in other highly-endemic districts
    corecore