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A B S T R A C T   

Infectious disease epidemiology is increasingly reliant on large-scale computation and inference. Models have 
guided health policy for epidemics including COVID-19 and Ebola and endemic diseases including malaria and 
tuberculosis. Yet a coding bug may bias results, yielding incorrect conclusions and actions causing avoidable 
harm. We are ethically obliged to make our code as free of error as possible. Unit testing is a coding method to 
avoid such bugs, but it is rarely used in epidemiology. We demonstrate how unit testing can handle the particular 
quirks of infectious disease models and aim to increase the uptake of this methodology in our field.   

1. Introduction 

Modelling is an important tool for understanding fundamental bio-
logical processes in infectious disease dynamics, evaluating potential 
intervention efficacy and forecasting disease burden. At the time of 
writing, infectious disease modellers are playing a central role in the 
interpretation of available data on the COVID-19 pandemic to inform 
policy design and evaluation (IHME COVID-19 health service utilization 
forecasting team and Murray, 2020; Ferguson et al., 2020; Hellewell 
et al., 2020). Similarly, policy on endemic infectious diseases, such as 
duration and frequency of control programmes and spatial prioritisa-
tion, is also directed by models (Behrend et al., 2020). Such research 
builds on a long history of modelling for policy (Heesterbeek et al., 
2015) and a general understanding of the dynamics of infectious disease 
systems. 

Given the importance of modelling results, it is vital that the code 
they rely on is both coded correctly and trusted. Bugs can be caused by 
typos, code behaving in unexpected ways, or logical flaws in the con-
struction of the code. Outside of epidemiology, bugs have been found in 
code that had been used by many researchers (Neupane et al., 2019) and 
may lead to retractions (American Society of Clinical Oncology, 2016). 
Bugs have also been found in highly influential work; a paper that 
informed austerity policies globally was found to have a crucial 
computational mistake (Herndon et al., 2014). In engineering, bugs 
caused the Mars Climate Orbiter and the Mariner 1 spacecraft to become 
lost or destroyed (NASA, 2020; Board, 1999). We do not know of high 

profile cases of infectious disease models being found to have bugs once 
published, but as code is not always shared and little post-publication 
testing of code occurs, this likely represents a failure of detection. The 
issue of trust was highlighted recently when Neil Ferguson, one of the 
leading modellers informing UK COVID-19 government policy, tweeted: 

“I’m conscious that lots of people would like to see and run the 
pandemic simulation code we are using to model control measures 
against COVID-19. To explain the background - I wrote the code 
(thousands of lines of undocumented C) 13+ years ago to model flu 
pandemics…” (Ferguson, 2020). 

The code that was released did not include any tests (Ferguson and 
MRC Centre for Global Infectious Disease Analysis, 2020) but subse-
quent work has added documentation, while independent code reviews 
have supported the results of the study (Eglen, 2020; BCS, The Chartered 
Institute for IT 2020). The tweet and lack of tests garnered considerable 
backlash (some of which may have been politically motivated (Chawla, 
2020)), with observers from the software industry noting that code 
should be both documented and tested to ensure its correctness (BCS, 
The Chartered Institute for IT 2020). It is understandable that during the 
fast-moving, early stages of a pandemic, other priorities were put above 
testing and documenting the code. It is also important to note that a lack 
of tests is not unusual in our field, or for some of the authors of this 
article. To guard against error, policy-makers now standardly request 
analyses from multiple modelling groups (as is the case in the UK for 
COVID-19 (SPI-M, 2020)) as a means to provide scientific robustness 
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(both in terms of model uncertainty and in terms of implementation) 
(Den Boon et al., 2019; Hollingsworth and Medley, 2017), yet this is not 
enough if the models themselves lack internal validity. 

Infectious disease modellers are rarely trained as professional pro-
grammers (BCS, The Chartered Institute for IT 2020) and recently some 
observers have made the case that this has been due to a lack of funding 
(Baker, 2020). Epidemiological groups such as RECON (Csardi et al., 
2020), and broader groups such as rOpenSci (www.ropensci.org), have 
however started providing support for scientists to develop better coding 
practices. The communities built around these groups are an invaluable 
resource for new programmers. It is also notable that while a number of 
articles have stated that unit tests should be written (Osborne et al., 
2014; Wilson et al., 2014; Csardi et al., 2020) there are few texts 
available that demonstrate the use of unit testing to check infectious 
disease models. While the basic premise of unit testing is simple, there is 
an art to knowing what aspects of code can and should be tested. Guides 
that enable researchers to acquire this skill quickly will benefit the field. 

Whilst there are many drivers and attempts to address the problem 
with code robustness, today’s models are increasingly moving from 
mean-field ordinary differential equation approximations to individual- 
based models with complex, data-driven contact processes (Willem 
et al., 2017; Ferguson et al., 2006). These increases in model complexity 
are accompanied by growing codebases. Furthermore, while there are 
some general packages for epidemiological modelling (Jenness et al., 
2018; Santos and Fernando, 2020), it is very common for epidemiolo-
gists to study a new model and to therefore code it from scratch. Unlike, 
established packages that have had time to mature and fix many bugs, 
newly programmed models are more prone to errors. As the mathe-
matical methods depend increasingly on numerical solutions rather than 
analytical pen-and-paper methods, it becomes more difficult to tell if a 
bug is present based on model outputs alone. Furthermore, checking 
models in an ad hoc way is biased as unexpected results trigger careful 
checks of the code while models that show expected behaviour are more 
likely to be assumed bug-free. 

Unit testing is a formally-defined, principled framework that com-
pares outputs from code to what the programmer expected to happen 
(Chapter 7 of Wickham (2015), Osborne et al. (2014); Wilson et al. 
(2014)). Ready-to-run frameworks for unit testing are available in R (R 
Core Team, 2018), Julia (Bezanson et al., 2017a) and Python (Python 
Core Team, 2015a) and are standard practice in the software industry. 
These testing concepts also apply to many other scientific fields, but here 
we focus on infectious diseases. Infectious disease modelling presents 
specific challenges, such as stochastic outputs (Ševčíková et al., 2006; 
Guderlei and Mayer, 2007; Patrick et al., 2017), which are difficult to 
test and not covered in general unit testing literature. There are a 
number of other programming techniques that should be used in 
conjunction with unit testing, such as defensive programming, version 
control, pair-programming and comprehensive documentation 
(Osborne et al., 2014; Wilson et al., 2014; Wickham, 2019, 2015; Csardi 
et al., 2020) and these are important complements to the methods in this 
paper. In this primer we introduce unit testing with a demonstration of 
an infectious disease model. While we use R throughout to exemplify the 
unit testing framework, the concepts apply equally well to the various 
languages commonly used by modellers such as Julia and Python; we 
therefore briefly direct the reader towards available testing frameworks 
for those languages in Section 7. 

2. Unit testing foundations 

At the heart of every unit test is a function output, its known or ex-
pected value and a process to compare the two. For the square root 
function (

̅̅̅
x

√
, or sqrt(x) in R), we could write a test that runs the function 

for the number 4, i.e. sqrt(x = 4), and compares it to the correct answer i. 
e. 2. However, often function arguments will cover an infinite range of 
possibilities and we cannot exhaustively check them all. Instead we 
devise tests that cover standard usage as well as special case scenarios: 

what do we want our function to do if given a negative number e.g. sqrt 
(-1), or a vector argument containing strings or missing values e.g. sqrt(c 
(4, "melon", NA))? 

Strictly-defined, unit testing tests code with no dependencies outside 
of the test definition. This is in contrast to integration testing that tests 
how these small units integrate with other units of code, including de-
pendencies. Testing at even higher levels includes system testing (which 
tests how multiple systems such as software and hardware interact) and 
acceptance testing (in which end-users, or software commissioners, test 
that it meets requirements). Within the scientific community however, 
the term unit testing is typically used in a slightly vague way and implies 
a combination of integration and (strict) unit testing. As so much sci-
entific software relies on various dependencies, even at very low levels, 
the strict definition of unit testing is not necessarily useful. Here, we 
continue to use this vague definition, simply focussing on testing of code 
at a low level. The first benefit of this is that it allows you to work out the 
exact expected result of a function call. Second, if you do find bugs, they 
are easier to isolate and fix if you are working at these low levels. Third, 
code that either calls the low-level functions or relies on outputs from 
them is easier to test and debug. 

In R, the testthat package (Wickham, 2011), provides a simple 
interface for testing. While a variety of test functions can make different 
comparisons, the two main ones are expect_true() and expect_equal(). 
expect_true() takes one argument: an expression that should evaluate to 
TRUE. For the square root example above, we would write expect_true 
(sqrt(4) == 2). expect_equal() takes two arguments, an expression and 
the expected output; so we would write expect_equal(sqrt(4), 2). 

There are a number of ways to incorporate unit testing into your 
programming workflow.  

1 Each time you write code for a new, discrete chunk of functionality, 
you should write tests that confirm it does what you expect. These 
tests should be kept with the code it is testing (in the same directory 
or in a subdirectory).  

2 Whenever a bug is found outside of the existing testing framework, a 
new test should be written to capture it. Then if the bug re-emerges it 
will hopefully be quickly flagged so that the developer can fix it.  

3 All of these tests should be run regularly as you develop new code. If 
a change causes the previous tests to break, this indicates the intro-
duction of an error in the new code, or implies that the older code 
could not generalise to the adapted environment. 

3. An example multi-pathogen re-infection model 

Here we define a toy epidemiological model and then demonstrate 
how to effectively write unit tests for it in R code. Consider a multi- 
pathogen system, with a population of N infected individuals whom 

Fig. 1. The 3-pathogen system with arrows showing the possible transitions at 
every time step. 
A diagram showing 3 compartments, A, B and C. Bidirectional arrows go be-
tween each compartment and from each compartment to itself (e.g. A to A). 
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each get infected by a new pathogen at every time step (Fig. 1). In this 
toy example, we imagine that individuals are infected with exactly one 
pathogen at a time. Some aspects of this model could reflect the dy-
namics of a population where specific antibiotics are used regularly i.e. 
each time step an individual is infected, diagnosed and treated sub-
optimally, leaving the individual susceptible to infection from any 
pathogen, including the one they were just treated for. The aim of this 
model however is not to be realistic but to serve as a learning tool with 
succinct code. We work through a more realistic model in the Supple-
mentary Material. 

Each individual i, at time t, is defined by the pathogen they are 
currently infected with Iit ∈ {a, b, c} for a 3-pathogen system. The pop-
ulation is therefore defined by a length N state vector It = (Iit)i=[1,N]. At 
each time step, every individual’s infection status is updated as: 

Iit = Unif(It− 1)

That is, at each iteration, the new infection status of each individual is a 
Uniform random sample from the set of infection statuses in the previous 
iteration (including itself Ii,t− 1). This model has a total of three param-
eters, the total number of individuals, the number of pathogen species, 
and the number of time steps, all of which are scalar, positive integers. 
Certainly this toy model is naïve as it is governed by mass-action prin-
ciples, ignoring contact and spatial dynamics. Nevertheless it will serve 
its purpose. Before writing any code we can consider the model’s ex-
pected behaviour. Firstly, we would expect an individual to be repeat-
edly infected with different strains. Secondly, we would expect the 
proportions of the different pathogens to stochastically drift, until all but 
one pathogen goes extinct. Code 1 shows our first attempt at imple-
menting this model. 

Code 1: Base example of the multi-pathogen re-infection model. 
Usually we would make some output plots to explore if our code is 

performing sensibly. Plotting the time course of which pathogen is 
infecting one individual, shows repeated infection with different path-
ogens as expected (Fig. 2). However, if we plot the proportion of each 
pathogen (Fig. 3) we quickly see that instead of stochastically varying, 
the proportions are identical through time and so there must be a bug 
present. This simple example demonstrates, first, that bugs can be sub-
tle. Second, it is not easy to notice an error, even in just 7 lines of code. 
Third, it is much easier to debug code when you know there is a bug. 
Fourth, while plotting simulation runs is an excellent way to check 
model behaviour, if we had only relied on Fig. 2 we would have missed 
the bug. Additionally, manually checking plots is a time consuming and 
non-scalable method because a human has to perform this scan every 
test run. In summary this ad hoc plotting approach reduces the chances 
that we will catch all bugs. 

The cause of the bug is that sample() defaults to sampling without 
replacement sample(…, replace = FALSE); this means everyone trans-
mits their infection pathogen on a one-to-one basis rather than one-to- 
many as required by the model. Setting replace = TRUE fixes this 
(Code 2) and when we plot the proportion of each pathogen (Fig. 4) we 
see the correct behaviour (a single pathogen drifting to dominance). 
From this point there are no further bugs in the code. In the subsequent 

sections we will develop this base example as we consider different 
concepts in unit testing, resulting in well-tested code by the end. Despite 
there being no further bugs, we can examine how unit testing allows us 
to protect against misuse of the code and reinforce our confidence in the 
code. 

Code 2: Corrected base example. 

4. Basic unit testing 

4.1. Write small functions 

To ensure the unit tests are evaluating the exact code as run in the 
analysis, code should be structured in functions, which can be used both 
to run unit tests and to generate results as part of a larger model code-
base. Make your functions compact with a single clearly-defined task. 

Fig. 2. Infection profile for individual 1, who is initially infected with pathogen 
a but then reinfected with different pathogens. 
Line plot with time on the x-axis and pathogen (either a, b, or c) on the y-axis. 
Individual 1 is initially infected with pathogen a, then becomes infected with 
pathogen c, then continues to be reinfected with different pathogens. 

Fig. 3. The proportion of each pathogen through time as given by Code 1. Each 
pathogen is a different line but are overplotted. The proportions of each 
pathogen do not stochastically drift as we would expect. 
A line plot showing the proportion of the three pathogens through time. The 
proportion of each pathogen in the population remains constant at 0.333. 
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We have defined a function, initialisePop(), to initialise the population 
and another, updatePop(), to run one iteration of the simulation (Code 
3). Organising the codebase into these bite-sized operations makes 
following the programming flow easier as well as understanding the 
code structure. Furthermore, it facilitates other good programming 
practices such as defensive programming and documentation — defen-
sive programming, such as checking the class and dimensions of inputs 
in the first few lines of a function, ensures that the code will fail quickly 
and informatively if incorrect inputs are used. At this stage we have also 
enabled the varying of the number of pathogens using the pathogens 
argument in the initialisePop() function. The first iteration of the 
simulation, I[1,], is initialised with a repeating sequence of letters. 

Code 3: Organising code into small functions. 

4.2. Test simple cases first 

If we start with a small population with few pathogens, we can then 
easily work out exactly what the initialised population should look like 
(Code 4). When we initialise a population with three individuals and 
three pathogens, we will get the sequence as seen in the first test. When 
the number of individuals is greater than the number of pathogens, the 
sequence will be repeated as seen in the second test. Finally, when the 
number of individuals is greater than, but not a multiple of, the number 
of pathogens, the sequence will have an incomplete repeat at the end as 
seen in Code 4. In this sequence of tests, we have taken our 

understanding of the function logic, and used it to make predictions of 
what the results should be. We then test that the result is as expected and 
if everything is correct the code will return no output. 

Code 4: Using simple parameter sets we can work out, beforehand, 
what results to expect. 

In contrast, if we had defined the initialisePop() function incorrectly, 
the test would fail and return an error. 

Code 5: If our code is incorrect, the test will return an error. 

4.3. Test all arguments 

initialisePop() has three arguments to check. First we initialise the 
population, and then alter each argument in turn (Code 6). Arguments 
n_steps and N directly change the expected dimension of the returned 
matrix, so we check that the output of the function is the expected size. 
For the pathogens argument we test that the number of pathogens is 
equal to the number requested. 

Code 6: Test all function arguments in turn. 

4.4. Does the function logic meet your expectations? 

We can also cover cases that expose deviations from the logical 
structure of the system. After initialising the population, we expect all 
the rows other than the first to contain NAs. We also expect each of the 
pathogens a, b and c to occur at least once on the first row if patho-
gens = 3 and N ≥ 3. Finally, updatePop() performs a single simulation 
time step, so we expect only one additional row to be populated. Instead 
of testing by their numerical values, we verify logical statements of the 
results within our macro understanding of the model system (Code 7). 

Code 7: Test more complex cases using your understanding of the 
system. 

4.5. Combine simple functions and test them at a higher level 

In the end an entire model only runs when its functions work 
together seamlessly. So we next check their connections; achieved 
through nesting functions together, or defining them at a higher level 
and checking the macro aspects of the model. This could be considered 
integration testing rather than unit testing. We define a function fullSim 
() that runs both initialisePop() and updatePop() to yield one complete 
simulation. We would expect there to be no NAs in the output from 
fullSim() and every element to be either a, b or c. 

Code 8: Combine simple functions through nesting, to check high- 

Fig. 4. The correct behaviour with the proportion of each pathogen, as a 
different line, drifting to dominance or extinction. 
A line plot showing the proportion of the three pathogens through time. After 5 
time steps, pathogen a has risen to a proportion of 1 while pathogens a and b 
have a proportion of 0. 
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level functionality. 5. Stochastic code 

Stochastic simulations are a common feature in infectious disease 
models. Stochastic events are difficult to test effectively because, by 

T.C.D. Lucas et al.                                                                                                                                                                                                                              



Epidemics 33 (2020) 100425

6

definition, we do not know beforehand what the result will be 
(Ševčíková et al., 2006; Guderlei and Mayer, 2007; Patrick et al., 2017). 
We can check very broad-scale properties, like Code 8, where we check 
the range of pathogen values. However, code could still pass and be 
wrong (for example the base example (Code 1) would still pass that test). 
There are however a number of approaches that can help. 

5.1. Split stochastic and deterministic parts 

Isolate the stochastic parts of your code. For example, updatePop() 
performs stochastic and deterministic operations in one line (Code 3). 
First updatePop() stochastically samples who gets infected by whom at 
iteration t. Then it takes those infection events and assigns the new in-
fectious status for each individual. We demonstrate in Code 9 how this 
could be split. We accept this is a fairly exaggerated example and that 
splitting a single line of code into two functions is rare. The more 
common scenario is splitting a multi-line function into smaller functions 
which also brings benefits of code organisation so it does not feel like 
extra effort. 

Code 9: Isolation of the deterministic and stochastic elements. 
Now, half of updatePop() is deterministic so can be checked as pre-

viously discussed. We still have chooseInfector() that is irreducibly 
stochastic. We now examine some techniques for directly testing these 
stochastic parts. 

5.2. Pick a smart parameter for a deterministic result 

In the same way that we used simple parameters values in Code 4, we 
can often find simple cases for which stochastic functions become 
deterministic. For example, X ∼ Bernoulli(p) will always generate 
zeroes for p = 0 or ones for p = 1. In the case of a single pathogen (Code 
10), the model is no longer stochastic. So initialisation with one path-
ogen means the second time step should equal the first. 

Code 10: A stochastic function can output deterministically if you 
can find the right parameter set. 

5.3. Test all possible answers (if few) 

Working again with a simple parameter set, there are some cases 
where the code is stochastic, but with a small, finite set of outputs. So we 
can run the function exhaustively and check it returns all of the possible 
outputs. For a population of two people, chooseInfector() returns a 
length-2 vector with the possible elements of 1 or 2. There are four 
possibilities when drawing who is infected by whom. Both individuals 
can be infected by individual 1, giving the vector {1, 1}. Both in-
dividuals can be infected by individual 2, giving {2, 2}. Both individuals 
can infect themselves, giving {1, 2}. Or finally both individuals can 
infect each other, giving {2, 1}. In (Code 11), chooseInfector(N = 2) 
returns a length-2 vector with the indices of the infector for each 
infectee. paste0() then turns this length-2 vector into a length-1 string 
with two characters; we expect this to be one of “11”, “22”, “12” or “21”. 

replicate() runs the expression 300 times. 
Code 11: Testing stochastic output when it only covers a few finite 

values. 

5.4. Use very large samples for the stochastic part 

Testing can be made easier by using very large numbers. This typi-
cally involves large sample sizes or numbers of stochastic runs. For 
example, the clearest test to distinguish between our original, buggy 
code (Code 1) and our correct code (Code 2) is that in the correct code 
there is the possibility for an individual to infect more than one indi-
vidual in a single time step. In any given run this is never guaranteed, 
but the larger the population size the more likely it is to occur. With a 
population of 1000, the probability that no individual infects two others 
is vanishingly rare (Code 12). As this test is now stochastic we should set 
the seed, using set.seed(), of the random number generator to make the 
test reproducible. 

Code 12: Testing that the code does allow one individual to infect 
multiple individuals. 

If we have an event that we know should never happen, we can use a 
large number of simulations to provide stronger evidence that it does not 
stochastically occur. However, it can be difficult to determine how many 
times is reasonable to run a simulation, especially if time is short. This 
strategy works best when we have a specific bug that occurs relatively 
frequently (perhaps once every ten simulations or so). If the bug occurs 
every ten simulations and we have not fixed it, we would be confident 
that it will occur at least once if we run the simulation 500 or 1000 
times. Conversely, if the bug does not occur even once in 500 or 1000 
simulations, we can be fairly sure we have fixed it. Similarly, a bug 
might cause an event that should be rare to instead occur very regularly 
or even every time the code is run. In our original buggy code (Code 1) 
we found that the proportions remained identical for entire simulations. 
We would expect this to happen only very rarely. We can run a large 
number of short simulations to check that this specific bug is not still 
occurring by confirming that the proportion of each pathogen is not 
always the same between the first and last time point. As long as we find 
at least one simulation where the proportions of each pathogen are 
different between the first and last iteration, we can be more confident 
that the bug has been fixed. 

Code 13: Assessing if a bug fix was a likely success with large code 
runs, when the bug was appearing relatively frequently. 

This example can be thought of more generally as having an expected 
distribution of an output and using a statistical test to compare the 
simulation results with the expectation. Here, we had a binomial event 
(was the pathogen proportions different between the first and last time 
step) and an expected frequency of this event (greater than zero). This 
approach to testing stochastic code is detailed in ̌Sevčíková et al. (2006); 
Guderlei and Mayer (2007) and Patrick et al. (2017). If we know a 
property of the expected distribution (the mean for example) we can run 
the simulation repeatedly and use a statistical test to compare the dis-
tribution of simulated outputs to the expected distribution. 
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6. Further testing 

6.1. Test incorrect inputs 

As well as testing that functions work when given the correct inputs, 
we should also test that they behave sensibly when given the wrong 
ones. This typically involves the user inputting argument values that do 
not make sense. This may be, for example, because the inputted argu-
ment values are the wrong class, in the wrong numeric range, or have 
missing data values — therefore it is useful to test that functions fail 
gracefully. This is especially true for external, exported functions, 
available to a user on a package’s front-end. However, it is not always 
obvious what constitutes an ‘incorrect value’ even to the person who 
wrote the code. In some cases, inputting incorrect argument values may 
cause the function to fail quickly. In other cases, code may run silently 
giving false results or take a long time to throw an error. Both of these 
cases can be serious or annoying and difficult to debug afterwards. In 
this section we identify frailties in the code that are conceptually 
different to a bug; the model as specified is already implemented 
correctly. Instead we are making the code more user-friendly and user- 
safe to protect against mistakes during future code re-use. Often for 
these cases, the expected behaviour of the function should be to give an 
error. There is no correct output for an epidemiological model with -1 
pathogens. Instead the function should give an informative error mes-
sage. Often the simplest solution is to use defensive programming and 
include argument checks at the beginning of functions. We then have to 

write slightly unintuitive tests for an expression where the expected 
behaviour is an error. If the expression does not throw an error, the test 
should throw an error (as this is not the expected behaviour). 
Conversely, if the expression does throw an error, the test should pass 
and not error. We can use the expect_error() function for this task. This 
function takes an expression as its first argument and reports an error if 
the given expression does not throw an expected error. We can first 
check that the code sensibly handles the user inputting a string instead of 
an integer for the number of pathogens. Because this expression throws 
an error, expect_error() does not error and the test passes. 

Code 14: Testing incorrect pathogen inputs. 
Now we contrast what happens if the user inputs a vector of patho-

gens to the initialisePop() function. Here we imagine the user intended 
to run a simulation with three pathogens: 1, 2 and 3. 

Code 15: A failing test for incorrect pathogen inputs. 
This test fails because the function does not throw an error. Instead 

the code takes the first element of pathogens and ignores the rest. 
Therefore, a population is created with one pathogen, not three, which is 
almost certainly not what the user wanted. Here, the safest fix is to add 
an explicit argument check at the top of the function (Code 16). The 
same test now passes because initialisePop() throws an error when a 
vector is supplied to the pathogens argument. 

Code 16: New definition, using defensive programming, of the ini-
tialisePop() function and a passing test for incorrect pathogen inputs. 

We can similarly check how the code handles a user inputting a 
vector of numbers to the n_steps argument (perhaps thinking it needed a 
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vector of all time points to run). In Code 16, initialisePop() does not 
throw an error if a vector is supplied to n_steps. However, fullSim() does 
throw an error if a vector is supplied to n_steps. The error message is 
“Error in seq.default(2, n_steps) : ‘to’ must be of length 1”. While it is a 
good thing that fullSim() throws an error, this error message is not very 
informative. If the code that runs before the error is thrown (in this case 
the initialisePop() function) takes a long time, it can also be time 
consuming to work out what threw the error (though the debug() 
function can help). It is also a signature of fragile code that the error is 
coincidental; a small change in the code might stop the error from 
occurring. These considerations all point towards defensive program-
ming as a good solution. We can add an additional argument check to 
initialisePop(). Importantly, we then want to check that fullSim() errors 
in the correct place (i.e. in initialisePop() rather than afterwards). We 
can achieve this using the regexp argument of expect_error() that com-
pares the actual error message to the expected error messages. The test 
will only pass if the error message contains the string provided. 

Code 17: Another new definition of the initialisePop() function and a 
passing test for the fullSim() function. 

6.2. Test special cases 

When writing tests it is easy to focus on standard behaviour. How-
ever, bugs often occur in special cases—when the code behaves quali-
tatively differently at a certain value or certain combinations of 
parameter values. For example, in R, selecting two or more columns 
from a matrix e.g. my_matrix[, 2:3] returns a matrix while selecting one 
column e.g. my_matrix[, 2] returns a vector. Code that relies on the 
returned object being a matrix would fail in this special case. These 

special cases can often be triggered with parameter sets that are at the 
edge of parameter space. This is where an understanding of the func-
tional form of the model can help. Consider a function divide(x, y) that 
divides x by y. We could test this function by noting that y * divide(x, y) 
should return x. If we write code that tests standard values of x and y 
such as (2 * divide(3, 2)) == 3 we would believe the function works for 
nearly all values of division, unless we ever try y = 0. We checked earlier 
if the n_steps argument of initialisePop() worked by verifying that the 
returned population had the correct dimensions (Code 6). We can test 
the fullSim() function in the same way (Code 18). However, if we try to 
run the same test with n_steps = 1 we get an error before we even get to 
the test. 

Code 18: fullSim() does not give a population matrix with the correct 
number of rows if one iteration is requested. 

In general, requesting a simulation with 1 time step is not without 
epidemiological meaning and is not an objectively wrong use of the 
function. The code behaves qualitatively differently for n_steps = 1 than 
for n_steps = 2 because the loop in Code 8 runs from 2 to n_steps setting t 
to each value in turn. When n_steps is 2 or more, this follows the 
sequence {2,3, ...}. When n_steps is 1, this instead follows the sequence 
{2,1}. The population is initialised with 1 row but the code still tries to 
store the results in the second row of the population matrix. For special 
cases like this, it may be rather subjective what the correct behaviour 
should be. It might be appropriate to simply declare that this parameter 
value is not allowed. This should be stated in the documentation and the 
function should throw an error. Here however, we will decide that this is 
a valid parameter value. We should change the code to handle this 
special case, and use the new test to check that our new code works. In 
Code 19 we use an if statement to explicitly handle the special case of 
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n_steps = 1 and our test now passes. 
Code 19: Handle the special case of t = 1 and test the new code. 

6.3. Unit testing frameworks 

Most programming languages have established testing packages. For 
R, there is the testthat package as already discussed as well as other 
packages such as tinytest which has the benefit of having no de-
pendencies. When structuring R code as standalone scripts, the tests 
should be saved in one or more scripts either in the same directory as the 
scripts in which the functions are defined, or within a subdirectory of the 
same project directory. The testing script needs to load all the functions 
it is going to test (with source() for example) and then run the tests. 
When structuring R code as a package, tests should be kept in the 
directory tests/testthat; further requirements to the structure can be 
found in Chapter 7 of Wickham (2015). All the tests in a package can 
then be run with test() from the devtools package (Wickham et al., 2019) 
or check() for additional checks relevant to the package build. If the code 
is to be part of a package then these tools are essential to run the code 
within the context of a build environment. These tools also provide a 
clean environment to highlight if a test was previously relying on objects 
defined outside of the test script. Furthermore, organising code in a 
package provides further benefits such as tools to aid the writing of 
documentation, systematic handling of dependencies, and tools to track 
whether every line of code in the package is tested such as the covr 
package (Hester, 2020). The practice of organising code as a package, 
even if there is no expectation that others will use the code, is under-
appreciated and underused in epidemiology. The testing frameworks of 
other programming languages differ but the main concept of comparing 
a function evaluation to the expected output remains the same. In Julia 
there is the Test package (Bezanson et al., 2017b). The basic structure for 
tests with this package is shown in Code 20. We name the test and write 
a single expression that evaluates to TRUE or FALSE. For a Julia package, 
unit tests reside in test/runtests.jl and tests are run with Pkg.test(). 

Code 20: Julia test example. 
Finally, in Python tests can be performed using the unittest frame-

work (Python Core Team, 2015b); tests must be written into a class that 
inherits from the TestCase class. The tests must be written as methods 
with self as the first argument. An example test script is shown in Code 
21. Tests should be kept in a directory called Lib/test, and the filename 
of every file with tests should begin with “test_”. 

Code 21: Python test example. 

7. Continuous integration 

If your code is under version control (Osborne et al., 2014; Wilson 
et al., 2014) and hosted online (e.g. on GitHub, GitLab or BitBucket), 
you can automate the running of unit tests—also known as continuous 
integration. In this setup, whenever you push code changes from your 
local computer to the online repository, any tests that you have defined 
get run automatically. Furthermore, these tests can be automated to run 
periodically so that bugs caused by changes in dependencies are flagged. 
There are various continuous integration services such as www.travis-ci. 
org, GitHub actions and GitLab pipelines. These services are often free 
on a limited basis, or free if your code is open source. We briefly describe 
the setup of the simplest case using Travis CI. Setting up continuous 
integration is very straightforward for R code already organised into a 
package and hosted openly on GitHub. Within your version-controlled 
folder that contains the R code, you add a one-liner file named “. 
travis.yml” that contains a description of which language the code uses. 

Code 22: A basic travis yml file. 
This file can also be created with use_travis() from the usethis 

package. You then sign up to travis-ci.org and point it to the correct 
GitHub repository. To authenticate and trigger the first automatic test 
you need to make a minor change to your code, commit and push to 
GitHub. More details on setting up Travis, and how to continuously track 
test coverage using covr and codecov, can be found in Chapter 14.3 of 
Wickham (2015). 

8. Concluding remarks 

It is vital that infectious disease models are coded to minimise bugs. 
Unit testing is a well-defined, principled way to do this. There are many 
frameworks that make aspects of unit testing automatic and more 
informative and these should be used where possible. The basic princi-
ples of unit testing are simple but writing good tests is a skill that takes 
time, practice and thought. However, ensuring your code is robust and 
well-tested saves time and effort in the long run and helps prevent 
spurious results. Our aim in this paper was to demonstrate tailored re-
sults for infectious disease modelling. There are a number of standard 
programming approaches to unit testing which would be good further 
reading (Chapter 7 of Wickham (2015), Osborne et al. (2014); Wilson 
et al. (2014)). As demonstrated here, it is initially time-consuming to 
program in this way, but over time it becomes habitual, and both you 
and the policy-makers who use your models will benefit from it. 
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archived version at https://doi.org/10.5281/zenodo.4293667. 
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