
Epidemics 33 (2020) 100425

Available online 26 November 2020
1755-4365/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Review

Responsible modelling: Unit testing for infectious disease epidemiology

Tim C.D. Lucas a,*, Timothy M Pollington b, Emma L Davis c, T Déirdre Hollingsworth c

a Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK. Centre for Environment and Health, School of Public Health,
Imperial College, UK
b Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK. MathSys CDT, University of Warwick, UK
c Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK

A R T I C L E I N F O

Keywords:
Unit testing
Software development
Reproducible science
Computational models

A B S T R A C T

Infectious disease epidemiology is increasingly reliant on large-scale computation and inference. Models have
guided health policy for epidemics including COVID-19 and Ebola and endemic diseases including malaria and
tuberculosis. Yet a coding bug may bias results, yielding incorrect conclusions and actions causing avoidable
harm. We are ethically obliged to make our code as free of error as possible. Unit testing is a coding method to
avoid such bugs, but it is rarely used in epidemiology. We demonstrate how unit testing can handle the particular
quirks of infectious disease models and aim to increase the uptake of this methodology in our field.

1. Introduction

Modelling is an important tool for understanding fundamental bio-
logical processes in infectious disease dynamics, evaluating potential
intervention efficacy and forecasting disease burden. At the time of
writing, infectious disease modellers are playing a central role in the
interpretation of available data on the COVID-19 pandemic to inform
policy design and evaluation (IHME COVID-19 health service utilization
forecasting team and Murray, 2020; Ferguson et al., 2020; Hellewell
et al., 2020). Similarly, policy on endemic infectious diseases, such as
duration and frequency of control programmes and spatial prioritisa-
tion, is also directed by models (Behrend et al., 2020). Such research
builds on a long history of modelling for policy (Heesterbeek et al.,
2015) and a general understanding of the dynamics of infectious disease
systems.

Given the importance of modelling results, it is vital that the code
they rely on is both coded correctly and trusted. Bugs can be caused by
typos, code behaving in unexpected ways, or logical flaws in the con-
struction of the code. Outside of epidemiology, bugs have been found in
code that had been used by many researchers (Neupane et al., 2019) and
may lead to retractions (American Society of Clinical Oncology, 2016).
Bugs have also been found in highly influential work; a paper that
informed austerity policies globally was found to have a crucial
computational mistake (Herndon et al., 2014). In engineering, bugs
caused the Mars Climate Orbiter and the Mariner 1 spacecraft to become
lost or destroyed (NASA, 2020; Board, 1999). We do not know of high

profile cases of infectious disease models being found to have bugs once
published, but as code is not always shared and little post-publication
testing of code occurs, this likely represents a failure of detection. The
issue of trust was highlighted recently when Neil Ferguson, one of the
leading modellers informing UK COVID-19 government policy, tweeted:

“I’m conscious that lots of people would like to see and run the
pandemic simulation code we are using to model control measures
against COVID-19. To explain the background - I wrote the code
(thousands of lines of undocumented C) 13+ years ago to model flu
pandemics…” (Ferguson, 2020).

The code that was released did not include any tests (Ferguson and
MRC Centre for Global Infectious Disease Analysis, 2020) but subse-
quent work has added documentation, while independent code reviews
have supported the results of the study (Eglen, 2020; BCS, The Chartered
Institute for IT 2020). The tweet and lack of tests garnered considerable
backlash (some of which may have been politically motivated (Chawla,
2020)), with observers from the software industry noting that code
should be both documented and tested to ensure its correctness (BCS,
The Chartered Institute for IT 2020). It is understandable that during the
fast-moving, early stages of a pandemic, other priorities were put above
testing and documenting the code. It is also important to note that a lack
of tests is not unusual in our field, or for some of the authors of this
article. To guard against error, policy-makers now standardly request
analyses from multiple modelling groups (as is the case in the UK for
COVID-19 (SPI-M, 2020)) as a means to provide scientific robustness

* Corresponding author.
E-mail address: timcdlucas@gmail.com (T.C.D. Lucas).

Contents lists available at ScienceDirect

Epidemics

journal homepage: www.elsevier.com/locate/epidemics

https://doi.org/10.1016/j.epidem.2020.100425
Received 27 July 2020; Received in revised form 21 October 2020; Accepted 21 November 2020

mailto:timcdlucas@gmail.com
www.sciencedirect.com/science/journal/17554365
https://www.elsevier.com/locate/epidemics
https://doi.org/10.1016/j.epidem.2020.100425
https://doi.org/10.1016/j.epidem.2020.100425
https://doi.org/10.1016/j.epidem.2020.100425
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epidem.2020.100425&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Epidemics 33 (2020) 100425

2

(both in terms of model uncertainty and in terms of implementation)
(Den Boon et al., 2019; Hollingsworth and Medley, 2017), yet this is not
enough if the models themselves lack internal validity.

Infectious disease modellers are rarely trained as professional pro-
grammers (BCS, The Chartered Institute for IT 2020) and recently some
observers have made the case that this has been due to a lack of funding
(Baker, 2020). Epidemiological groups such as RECON (Csardi et al.,
2020), and broader groups such as rOpenSci (www.ropensci.org), have
however started providing support for scientists to develop better coding
practices. The communities built around these groups are an invaluable
resource for new programmers. It is also notable that while a number of
articles have stated that unit tests should be written (Osborne et al.,
2014; Wilson et al., 2014; Csardi et al., 2020) there are few texts
available that demonstrate the use of unit testing to check infectious
disease models. While the basic premise of unit testing is simple, there is
an art to knowing what aspects of code can and should be tested. Guides
that enable researchers to acquire this skill quickly will benefit the field.

Whilst there are many drivers and attempts to address the problem
with code robustness, today’s models are increasingly moving from
mean-field ordinary differential equation approximations to individual-
based models with complex, data-driven contact processes (Willem
et al., 2017; Ferguson et al., 2006). These increases in model complexity
are accompanied by growing codebases. Furthermore, while there are
some general packages for epidemiological modelling (Jenness et al.,
2018; Santos and Fernando, 2020), it is very common for epidemiolo-
gists to study a new model and to therefore code it from scratch. Unlike,
established packages that have had time to mature and fix many bugs,
newly programmed models are more prone to errors. As the mathe-
matical methods depend increasingly on numerical solutions rather than
analytical pen-and-paper methods, it becomes more difficult to tell if a
bug is present based on model outputs alone. Furthermore, checking
models in an ad hoc way is biased as unexpected results trigger careful
checks of the code while models that show expected behaviour are more
likely to be assumed bug-free.

Unit testing is a formally-defined, principled framework that com-
pares outputs from code to what the programmer expected to happen
(Chapter 7 of Wickham (2015), Osborne et al. (2014); Wilson et al.
(2014)). Ready-to-run frameworks for unit testing are available in R (R
Core Team, 2018), Julia (Bezanson et al., 2017a) and Python (Python
Core Team, 2015a) and are standard practice in the software industry.
These testing concepts also apply to many other scientific fields, but here
we focus on infectious diseases. Infectious disease modelling presents
specific challenges, such as stochastic outputs (Ševčíková et al., 2006;
Guderlei and Mayer, 2007; Patrick et al., 2017), which are difficult to
test and not covered in general unit testing literature. There are a
number of other programming techniques that should be used in
conjunction with unit testing, such as defensive programming, version
control, pair-programming and comprehensive documentation
(Osborne et al., 2014; Wilson et al., 2014; Wickham, 2019, 2015; Csardi
et al., 2020) and these are important complements to the methods in this
paper. In this primer we introduce unit testing with a demonstration of
an infectious disease model. While we use R throughout to exemplify the
unit testing framework, the concepts apply equally well to the various
languages commonly used by modellers such as Julia and Python; we
therefore briefly direct the reader towards available testing frameworks
for those languages in Section 7.

2. Unit testing foundations

At the heart of every unit test is a function output, its known or ex-
pected value and a process to compare the two. For the square root
function (

̅̅̅
x

√
, or sqrt(x) in R), we could write a test that runs the function

for the number 4, i.e. sqrt(x = 4), and compares it to the correct answer i.
e. 2. However, often function arguments will cover an infinite range of
possibilities and we cannot exhaustively check them all. Instead we
devise tests that cover standard usage as well as special case scenarios:

what do we want our function to do if given a negative number e.g. sqrt
(-1), or a vector argument containing strings or missing values e.g. sqrt(c
(4, "melon", NA))?

Strictly-defined, unit testing tests code with no dependencies outside
of the test definition. This is in contrast to integration testing that tests
how these small units integrate with other units of code, including de-
pendencies. Testing at even higher levels includes system testing (which
tests how multiple systems such as software and hardware interact) and
acceptance testing (in which end-users, or software commissioners, test
that it meets requirements). Within the scientific community however,
the term unit testing is typically used in a slightly vague way and implies
a combination of integration and (strict) unit testing. As so much sci-
entific software relies on various dependencies, even at very low levels,
the strict definition of unit testing is not necessarily useful. Here, we
continue to use this vague definition, simply focussing on testing of code
at a low level. The first benefit of this is that it allows you to work out the
exact expected result of a function call. Second, if you do find bugs, they
are easier to isolate and fix if you are working at these low levels. Third,
code that either calls the low-level functions or relies on outputs from
them is easier to test and debug.

In R, the testthat package (Wickham, 2011), provides a simple
interface for testing. While a variety of test functions can make different
comparisons, the two main ones are expect_true() and expect_equal().
expect_true() takes one argument: an expression that should evaluate to
TRUE. For the square root example above, we would write expect_true
(sqrt(4) == 2). expect_equal() takes two arguments, an expression and
the expected output; so we would write expect_equal(sqrt(4), 2).

There are a number of ways to incorporate unit testing into your
programming workflow.

1 Each time you write code for a new, discrete chunk of functionality,
you should write tests that confirm it does what you expect. These
tests should be kept with the code it is testing (in the same directory
or in a subdirectory).

2 Whenever a bug is found outside of the existing testing framework, a
new test should be written to capture it. Then if the bug re-emerges it
will hopefully be quickly flagged so that the developer can fix it.

3 All of these tests should be run regularly as you develop new code. If
a change causes the previous tests to break, this indicates the intro-
duction of an error in the new code, or implies that the older code
could not generalise to the adapted environment.

3. An example multi-pathogen re-infection model

Here we define a toy epidemiological model and then demonstrate
how to effectively write unit tests for it in R code. Consider a multi-
pathogen system, with a population of N infected individuals whom

Fig. 1. The 3-pathogen system with arrows showing the possible transitions at
every time step.
A diagram showing 3 compartments, A, B and C. Bidirectional arrows go be-
tween each compartment and from each compartment to itself (e.g. A to A).

T.C.D. Lucas et al.

http://www.ropensci.org

Epidemics 33 (2020) 100425

3

each get infected by a new pathogen at every time step (Fig. 1). In this
toy example, we imagine that individuals are infected with exactly one
pathogen at a time. Some aspects of this model could reflect the dy-
namics of a population where specific antibiotics are used regularly i.e.
each time step an individual is infected, diagnosed and treated sub-
optimally, leaving the individual susceptible to infection from any
pathogen, including the one they were just treated for. The aim of this
model however is not to be realistic but to serve as a learning tool with
succinct code. We work through a more realistic model in the Supple-
mentary Material.

Each individual i, at time t, is defined by the pathogen they are
currently infected with Iit ∈ {a, b, c} for a 3-pathogen system. The pop-
ulation is therefore defined by a length N state vector It = (Iit)i=[1,N]. At
each time step, every individual’s infection status is updated as:

Iit = Unif(It− 1)

That is, at each iteration, the new infection status of each individual is a
Uniform random sample from the set of infection statuses in the previous
iteration (including itself Ii,t− 1). This model has a total of three param-
eters, the total number of individuals, the number of pathogen species,
and the number of time steps, all of which are scalar, positive integers.
Certainly this toy model is naïve as it is governed by mass-action prin-
ciples, ignoring contact and spatial dynamics. Nevertheless it will serve
its purpose. Before writing any code we can consider the model’s ex-
pected behaviour. Firstly, we would expect an individual to be repeat-
edly infected with different strains. Secondly, we would expect the
proportions of the different pathogens to stochastically drift, until all but
one pathogen goes extinct. Code 1 shows our first attempt at imple-
menting this model.

Code 1: Base example of the multi-pathogen re-infection model.
Usually we would make some output plots to explore if our code is

performing sensibly. Plotting the time course of which pathogen is
infecting one individual, shows repeated infection with different path-
ogens as expected (Fig. 2). However, if we plot the proportion of each
pathogen (Fig. 3) we quickly see that instead of stochastically varying,
the proportions are identical through time and so there must be a bug
present. This simple example demonstrates, first, that bugs can be sub-
tle. Second, it is not easy to notice an error, even in just 7 lines of code.
Third, it is much easier to debug code when you know there is a bug.
Fourth, while plotting simulation runs is an excellent way to check
model behaviour, if we had only relied on Fig. 2 we would have missed
the bug. Additionally, manually checking plots is a time consuming and
non-scalable method because a human has to perform this scan every
test run. In summary this ad hoc plotting approach reduces the chances
that we will catch all bugs.

The cause of the bug is that sample() defaults to sampling without
replacement sample(…, replace = FALSE); this means everyone trans-
mits their infection pathogen on a one-to-one basis rather than one-to-
many as required by the model. Setting replace = TRUE fixes this
(Code 2) and when we plot the proportion of each pathogen (Fig. 4) we
see the correct behaviour (a single pathogen drifting to dominance).
From this point there are no further bugs in the code. In the subsequent

sections we will develop this base example as we consider different
concepts in unit testing, resulting in well-tested code by the end. Despite
there being no further bugs, we can examine how unit testing allows us
to protect against misuse of the code and reinforce our confidence in the
code.

Code 2: Corrected base example.

4. Basic unit testing

4.1. Write small functions

To ensure the unit tests are evaluating the exact code as run in the
analysis, code should be structured in functions, which can be used both
to run unit tests and to generate results as part of a larger model code-
base. Make your functions compact with a single clearly-defined task.

Fig. 2. Infection profile for individual 1, who is initially infected with pathogen
a but then reinfected with different pathogens.
Line plot with time on the x-axis and pathogen (either a, b, or c) on the y-axis.
Individual 1 is initially infected with pathogen a, then becomes infected with
pathogen c, then continues to be reinfected with different pathogens.

Fig. 3. The proportion of each pathogen through time as given by Code 1. Each
pathogen is a different line but are overplotted. The proportions of each
pathogen do not stochastically drift as we would expect.
A line plot showing the proportion of the three pathogens through time. The
proportion of each pathogen in the population remains constant at 0.333.

T.C.D. Lucas et al.

Epidemics 33 (2020) 100425

4

We have defined a function, initialisePop(), to initialise the population
and another, updatePop(), to run one iteration of the simulation (Code
3). Organising the codebase into these bite-sized operations makes
following the programming flow easier as well as understanding the
code structure. Furthermore, it facilitates other good programming
practices such as defensive programming and documentation — defen-
sive programming, such as checking the class and dimensions of inputs
in the first few lines of a function, ensures that the code will fail quickly
and informatively if incorrect inputs are used. At this stage we have also
enabled the varying of the number of pathogens using the pathogens
argument in the initialisePop() function. The first iteration of the
simulation, I[1,], is initialised with a repeating sequence of letters.

Code 3: Organising code into small functions.

4.2. Test simple cases first

If we start with a small population with few pathogens, we can then
easily work out exactly what the initialised population should look like
(Code 4). When we initialise a population with three individuals and
three pathogens, we will get the sequence as seen in the first test. When
the number of individuals is greater than the number of pathogens, the
sequence will be repeated as seen in the second test. Finally, when the
number of individuals is greater than, but not a multiple of, the number
of pathogens, the sequence will have an incomplete repeat at the end as
seen in Code 4. In this sequence of tests, we have taken our

understanding of the function logic, and used it to make predictions of
what the results should be. We then test that the result is as expected and
if everything is correct the code will return no output.

Code 4: Using simple parameter sets we can work out, beforehand,
what results to expect.

In contrast, if we had defined the initialisePop() function incorrectly,
the test would fail and return an error.

Code 5: If our code is incorrect, the test will return an error.

4.3. Test all arguments

initialisePop() has three arguments to check. First we initialise the
population, and then alter each argument in turn (Code 6). Arguments
n_steps and N directly change the expected dimension of the returned
matrix, so we check that the output of the function is the expected size.
For the pathogens argument we test that the number of pathogens is
equal to the number requested.

Code 6: Test all function arguments in turn.

4.4. Does the function logic meet your expectations?

We can also cover cases that expose deviations from the logical
structure of the system. After initialising the population, we expect all
the rows other than the first to contain NAs. We also expect each of the
pathogens a, b and c to occur at least once on the first row if patho-
gens = 3 and N ≥ 3. Finally, updatePop() performs a single simulation
time step, so we expect only one additional row to be populated. Instead
of testing by their numerical values, we verify logical statements of the
results within our macro understanding of the model system (Code 7).

Code 7: Test more complex cases using your understanding of the
system.

4.5. Combine simple functions and test them at a higher level

In the end an entire model only runs when its functions work
together seamlessly. So we next check their connections; achieved
through nesting functions together, or defining them at a higher level
and checking the macro aspects of the model. This could be considered
integration testing rather than unit testing. We define a function fullSim
() that runs both initialisePop() and updatePop() to yield one complete
simulation. We would expect there to be no NAs in the output from
fullSim() and every element to be either a, b or c.

Code 8: Combine simple functions through nesting, to check high-

Fig. 4. The correct behaviour with the proportion of each pathogen, as a
different line, drifting to dominance or extinction.
A line plot showing the proportion of the three pathogens through time. After 5
time steps, pathogen a has risen to a proportion of 1 while pathogens a and b
have a proportion of 0.

T.C.D. Lucas et al.

Epidemics 33 (2020) 100425

5

level functionality. 5. Stochastic code

Stochastic simulations are a common feature in infectious disease
models. Stochastic events are difficult to test effectively because, by

T.C.D. Lucas et al.

Epidemics 33 (2020) 100425

6

definition, we do not know beforehand what the result will be
(Ševčíková et al., 2006; Guderlei and Mayer, 2007; Patrick et al., 2017).
We can check very broad-scale properties, like Code 8, where we check
the range of pathogen values. However, code could still pass and be
wrong (for example the base example (Code 1) would still pass that test).
There are however a number of approaches that can help.

5.1. Split stochastic and deterministic parts

Isolate the stochastic parts of your code. For example, updatePop()
performs stochastic and deterministic operations in one line (Code 3).
First updatePop() stochastically samples who gets infected by whom at
iteration t. Then it takes those infection events and assigns the new in-
fectious status for each individual. We demonstrate in Code 9 how this
could be split. We accept this is a fairly exaggerated example and that
splitting a single line of code into two functions is rare. The more
common scenario is splitting a multi-line function into smaller functions
which also brings benefits of code organisation so it does not feel like
extra effort.

Code 9: Isolation of the deterministic and stochastic elements.
Now, half of updatePop() is deterministic so can be checked as pre-

viously discussed. We still have chooseInfector() that is irreducibly
stochastic. We now examine some techniques for directly testing these
stochastic parts.

5.2. Pick a smart parameter for a deterministic result

In the same way that we used simple parameters values in Code 4, we
can often find simple cases for which stochastic functions become
deterministic. For example, X ∼ Bernoulli(p) will always generate
zeroes for p = 0 or ones for p = 1. In the case of a single pathogen (Code
10), the model is no longer stochastic. So initialisation with one path-
ogen means the second time step should equal the first.

Code 10: A stochastic function can output deterministically if you
can find the right parameter set.

5.3. Test all possible answers (if few)

Working again with a simple parameter set, there are some cases
where the code is stochastic, but with a small, finite set of outputs. So we
can run the function exhaustively and check it returns all of the possible
outputs. For a population of two people, chooseInfector() returns a
length-2 vector with the possible elements of 1 or 2. There are four
possibilities when drawing who is infected by whom. Both individuals
can be infected by individual 1, giving the vector {1, 1}. Both in-
dividuals can be infected by individual 2, giving {2, 2}. Both individuals
can infect themselves, giving {1, 2}. Or finally both individuals can
infect each other, giving {2, 1}. In (Code 11), chooseInfector(N = 2)
returns a length-2 vector with the indices of the infector for each
infectee. paste0() then turns this length-2 vector into a length-1 string
with two characters; we expect this to be one of “11”, “22”, “12” or “21”.

replicate() runs the expression 300 times.
Code 11: Testing stochastic output when it only covers a few finite

values.

5.4. Use very large samples for the stochastic part

Testing can be made easier by using very large numbers. This typi-
cally involves large sample sizes or numbers of stochastic runs. For
example, the clearest test to distinguish between our original, buggy
code (Code 1) and our correct code (Code 2) is that in the correct code
there is the possibility for an individual to infect more than one indi-
vidual in a single time step. In any given run this is never guaranteed,
but the larger the population size the more likely it is to occur. With a
population of 1000, the probability that no individual infects two others
is vanishingly rare (Code 12). As this test is now stochastic we should set
the seed, using set.seed(), of the random number generator to make the
test reproducible.

Code 12: Testing that the code does allow one individual to infect
multiple individuals.

If we have an event that we know should never happen, we can use a
large number of simulations to provide stronger evidence that it does not
stochastically occur. However, it can be difficult to determine how many
times is reasonable to run a simulation, especially if time is short. This
strategy works best when we have a specific bug that occurs relatively
frequently (perhaps once every ten simulations or so). If the bug occurs
every ten simulations and we have not fixed it, we would be confident
that it will occur at least once if we run the simulation 500 or 1000
times. Conversely, if the bug does not occur even once in 500 or 1000
simulations, we can be fairly sure we have fixed it. Similarly, a bug
might cause an event that should be rare to instead occur very regularly
or even every time the code is run. In our original buggy code (Code 1)
we found that the proportions remained identical for entire simulations.
We would expect this to happen only very rarely. We can run a large
number of short simulations to check that this specific bug is not still
occurring by confirming that the proportion of each pathogen is not
always the same between the first and last time point. As long as we find
at least one simulation where the proportions of each pathogen are
different between the first and last iteration, we can be more confident
that the bug has been fixed.

Code 13: Assessing if a bug fix was a likely success with large code
runs, when the bug was appearing relatively frequently.

This example can be thought of more generally as having an expected
distribution of an output and using a statistical test to compare the
simulation results with the expectation. Here, we had a binomial event
(was the pathogen proportions different between the first and last time
step) and an expected frequency of this event (greater than zero). This
approach to testing stochastic code is detailed in ̌Sevčíková et al. (2006);
Guderlei and Mayer (2007) and Patrick et al. (2017). If we know a
property of the expected distribution (the mean for example) we can run
the simulation repeatedly and use a statistical test to compare the dis-
tribution of simulated outputs to the expected distribution.

T.C.D. Lucas et al.

Epidemics 33 (2020) 100425

7

6. Further testing

6.1. Test incorrect inputs

As well as testing that functions work when given the correct inputs,
we should also test that they behave sensibly when given the wrong
ones. This typically involves the user inputting argument values that do
not make sense. This may be, for example, because the inputted argu-
ment values are the wrong class, in the wrong numeric range, or have
missing data values — therefore it is useful to test that functions fail
gracefully. This is especially true for external, exported functions,
available to a user on a package’s front-end. However, it is not always
obvious what constitutes an ‘incorrect value’ even to the person who
wrote the code. In some cases, inputting incorrect argument values may
cause the function to fail quickly. In other cases, code may run silently
giving false results or take a long time to throw an error. Both of these
cases can be serious or annoying and difficult to debug afterwards. In
this section we identify frailties in the code that are conceptually
different to a bug; the model as specified is already implemented
correctly. Instead we are making the code more user-friendly and user-
safe to protect against mistakes during future code re-use. Often for
these cases, the expected behaviour of the function should be to give an
error. There is no correct output for an epidemiological model with -1
pathogens. Instead the function should give an informative error mes-
sage. Often the simplest solution is to use defensive programming and
include argument checks at the beginning of functions. We then have to

write slightly unintuitive tests for an expression where the expected
behaviour is an error. If the expression does not throw an error, the test
should throw an error (as this is not the expected behaviour).
Conversely, if the expression does throw an error, the test should pass
and not error. We can use the expect_error() function for this task. This
function takes an expression as its first argument and reports an error if
the given expression does not throw an expected error. We can first
check that the code sensibly handles the user inputting a string instead of
an integer for the number of pathogens. Because this expression throws
an error, expect_error() does not error and the test passes.

Code 14: Testing incorrect pathogen inputs.
Now we contrast what happens if the user inputs a vector of patho-

gens to the initialisePop() function. Here we imagine the user intended
to run a simulation with three pathogens: 1, 2 and 3.

Code 15: A failing test for incorrect pathogen inputs.
This test fails because the function does not throw an error. Instead

the code takes the first element of pathogens and ignores the rest.
Therefore, a population is created with one pathogen, not three, which is
almost certainly not what the user wanted. Here, the safest fix is to add
an explicit argument check at the top of the function (Code 16). The
same test now passes because initialisePop() throws an error when a
vector is supplied to the pathogens argument.

Code 16: New definition, using defensive programming, of the ini-
tialisePop() function and a passing test for incorrect pathogen inputs.

We can similarly check how the code handles a user inputting a
vector of numbers to the n_steps argument (perhaps thinking it needed a

T.C.D. Lucas et al.

Epidemics 33 (2020) 100425

8

vector of all time points to run). In Code 16, initialisePop() does not
throw an error if a vector is supplied to n_steps. However, fullSim() does
throw an error if a vector is supplied to n_steps. The error message is
“Error in seq.default(2, n_steps) : ‘to’ must be of length 1”. While it is a
good thing that fullSim() throws an error, this error message is not very
informative. If the code that runs before the error is thrown (in this case
the initialisePop() function) takes a long time, it can also be time
consuming to work out what threw the error (though the debug()
function can help). It is also a signature of fragile code that the error is
coincidental; a small change in the code might stop the error from
occurring. These considerations all point towards defensive program-
ming as a good solution. We can add an additional argument check to
initialisePop(). Importantly, we then want to check that fullSim() errors
in the correct place (i.e. in initialisePop() rather than afterwards). We
can achieve this using the regexp argument of expect_error() that com-
pares the actual error message to the expected error messages. The test
will only pass if the error message contains the string provided.

Code 17: Another new definition of the initialisePop() function and a
passing test for the fullSim() function.

6.2. Test special cases

When writing tests it is easy to focus on standard behaviour. How-
ever, bugs often occur in special cases—when the code behaves quali-
tatively differently at a certain value or certain combinations of
parameter values. For example, in R, selecting two or more columns
from a matrix e.g. my_matrix[, 2:3] returns a matrix while selecting one
column e.g. my_matrix[, 2] returns a vector. Code that relies on the
returned object being a matrix would fail in this special case. These

special cases can often be triggered with parameter sets that are at the
edge of parameter space. This is where an understanding of the func-
tional form of the model can help. Consider a function divide(x, y) that
divides x by y. We could test this function by noting that y * divide(x, y)
should return x. If we write code that tests standard values of x and y
such as (2 * divide(3, 2)) == 3 we would believe the function works for
nearly all values of division, unless we ever try y = 0. We checked earlier
if the n_steps argument of initialisePop() worked by verifying that the
returned population had the correct dimensions (Code 6). We can test
the fullSim() function in the same way (Code 18). However, if we try to
run the same test with n_steps = 1 we get an error before we even get to
the test.

Code 18: fullSim() does not give a population matrix with the correct
number of rows if one iteration is requested.

In general, requesting a simulation with 1 time step is not without
epidemiological meaning and is not an objectively wrong use of the
function. The code behaves qualitatively differently for n_steps = 1 than
for n_steps = 2 because the loop in Code 8 runs from 2 to n_steps setting t
to each value in turn. When n_steps is 2 or more, this follows the
sequence {2,3, ...}. When n_steps is 1, this instead follows the sequence
{2,1}. The population is initialised with 1 row but the code still tries to
store the results in the second row of the population matrix. For special
cases like this, it may be rather subjective what the correct behaviour
should be. It might be appropriate to simply declare that this parameter
value is not allowed. This should be stated in the documentation and the
function should throw an error. Here however, we will decide that this is
a valid parameter value. We should change the code to handle this
special case, and use the new test to check that our new code works. In
Code 19 we use an if statement to explicitly handle the special case of

T.C.D. Lucas et al.

Epidemics 33 (2020) 100425

9

n_steps = 1 and our test now passes.
Code 19: Handle the special case of t = 1 and test the new code.

6.3. Unit testing frameworks

Most programming languages have established testing packages. For
R, there is the testthat package as already discussed as well as other
packages such as tinytest which has the benefit of having no de-
pendencies. When structuring R code as standalone scripts, the tests
should be saved in one or more scripts either in the same directory as the
scripts in which the functions are defined, or within a subdirectory of the
same project directory. The testing script needs to load all the functions
it is going to test (with source() for example) and then run the tests.
When structuring R code as a package, tests should be kept in the
directory tests/testthat; further requirements to the structure can be
found in Chapter 7 of Wickham (2015). All the tests in a package can
then be run with test() from the devtools package (Wickham et al., 2019)
or check() for additional checks relevant to the package build. If the code
is to be part of a package then these tools are essential to run the code
within the context of a build environment. These tools also provide a
clean environment to highlight if a test was previously relying on objects
defined outside of the test script. Furthermore, organising code in a
package provides further benefits such as tools to aid the writing of
documentation, systematic handling of dependencies, and tools to track
whether every line of code in the package is tested such as the covr
package (Hester, 2020). The practice of organising code as a package,
even if there is no expectation that others will use the code, is under-
appreciated and underused in epidemiology. The testing frameworks of
other programming languages differ but the main concept of comparing
a function evaluation to the expected output remains the same. In Julia
there is the Test package (Bezanson et al., 2017b). The basic structure for
tests with this package is shown in Code 20. We name the test and write
a single expression that evaluates to TRUE or FALSE. For a Julia package,
unit tests reside in test/runtests.jl and tests are run with Pkg.test().

Code 20: Julia test example.
Finally, in Python tests can be performed using the unittest frame-

work (Python Core Team, 2015b); tests must be written into a class that
inherits from the TestCase class. The tests must be written as methods
with self as the first argument. An example test script is shown in Code
21. Tests should be kept in a directory called Lib/test, and the filename
of every file with tests should begin with “test_”.

Code 21: Python test example.

7. Continuous integration

If your code is under version control (Osborne et al., 2014; Wilson
et al., 2014) and hosted online (e.g. on GitHub, GitLab or BitBucket),
you can automate the running of unit tests—also known as continuous
integration. In this setup, whenever you push code changes from your
local computer to the online repository, any tests that you have defined
get run automatically. Furthermore, these tests can be automated to run
periodically so that bugs caused by changes in dependencies are flagged.
There are various continuous integration services such as www.travis-ci.
org, GitHub actions and GitLab pipelines. These services are often free
on a limited basis, or free if your code is open source. We briefly describe
the setup of the simplest case using Travis CI. Setting up continuous
integration is very straightforward for R code already organised into a
package and hosted openly on GitHub. Within your version-controlled
folder that contains the R code, you add a one-liner file named “.
travis.yml” that contains a description of which language the code uses.

Code 22: A basic travis yml file.
This file can also be created with use_travis() from the usethis

package. You then sign up to travis-ci.org and point it to the correct
GitHub repository. To authenticate and trigger the first automatic test
you need to make a minor change to your code, commit and push to
GitHub. More details on setting up Travis, and how to continuously track
test coverage using covr and codecov, can be found in Chapter 14.3 of
Wickham (2015).

8. Concluding remarks

It is vital that infectious disease models are coded to minimise bugs.
Unit testing is a well-defined, principled way to do this. There are many
frameworks that make aspects of unit testing automatic and more
informative and these should be used where possible. The basic princi-
ples of unit testing are simple but writing good tests is a skill that takes
time, practice and thought. However, ensuring your code is robust and
well-tested saves time and effort in the long run and helps prevent
spurious results. Our aim in this paper was to demonstrate tailored re-
sults for infectious disease modelling. There are a number of standard
programming approaches to unit testing which would be good further
reading (Chapter 7 of Wickham (2015), Osborne et al. (2014); Wilson
et al. (2014)). As demonstrated here, it is initially time-consuming to
program in this way, but over time it becomes habitual, and both you
and the policy-makers who use your models will benefit from it.

T.C.D. Lucas et al.

http://www.travis-ci.org
http://www.travis-ci.org

Epidemics 33 (2020) 100425

10

Code availability

Please see the fully-reproducible and version-controlled code at
www.github.com/timcdlucas/unit_test_for_infectious_disease or the
archived version at https://doi.org/10.5281/zenodo.4293667.

Funding sources

TMP, TDH, TCDL and ELD gratefully acknowledge funding of the
NTD Modelling Consortium by the Bill & Melinda Gates Foundation
(BMGF) (grant number OPP1184344). Views, opinions, assumptions or
any other information set out in this article should not be attributed to
BMGF or any person connected with them. TMP’s PhD is supported by
the Engineering & Physical Sciences Research Council, Medical
Research Council and the University of Warwick (grant number EP/
L015374/1). TMP thanks the Big Data Institute for hosting him during
this work. All funders had no role in the study design, collection, anal-
ysis, interpretation of data, writing of the report, or decision to submit
the manuscript for publication.

CRediT authorship contribution statement

Tim CD Lucas: Conceptualisation, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Software, Visual-
isation, Writing - original draft, Writing - review & editing. Timothy M
Pollington: Conceptualisation, Software, Validation, Visualisation,
Writing - review & editing. Emma L Davis: Writing - review & editing. T
Déirdre Hollingsworth: Funding acquisition, Writing - review & edit-
ing. The authors would like to thank three anonymous reviewers for
their useful comments.

Declaration of Competing Interest

The authors have no competing interests.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.epidem.2020.100425.

References

American Society of Clinical Oncology, 2016. Retraction. J. Clin. Oncol. 34 (27),
3358–3359. https://doi.org/10.1200/JCO.2016.69.0875.

Baker, S., 2020. Pandemic Response Shines Spotlight on Coding in Science. https://www.
timeshighereducation.com/news/pandemic-response-shines-spotlight-coding-scien
ce.

BCS, The Chartered Institute for IT, 2020. Professionalising Software Development in
Scientific Research. https://www.bcs.org/media/5780/professionalising-softw
are-development.pdf.

Behrend, M.R., Basáñez, M.-G., Hamley, J., Porco, T.C., Stolk, W.A., Walker, M., de
Vlas, S.J., NTD Modelling Consortium, 2020. Modelling for policy: the five principles
of the Neglected Tropical Diseases Modelling Consortium. PLoS Negl. Trop. Dis. 14
(4), e0008033.

Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017a. Julia: a fresh approach to
numerical computing. SIAM Rev. 59 (1), 65–98. https://doi.org/10.1137/
141000671.

Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B., other contributors, 2017b. Test
V1.4.1: Simple Unit Testing Functionality in Julia. https://github.com/JuliaLang/jul
ia/blob/master/stdlib/Test/src/Test.jl.

Mishap Investigation Board, 1999. Mars Climate Orbiter Mishap Investigation Board
Phase I Report November 10, 1999.

Chawla, D.S., 2020. Critiqued Coronavirus Simulation Gets Thumbs up From Code-
checking Efforts. Nature. https://www.nature.com/articles/d41586-020-01685-y.

Csardi, G., FitzJohn, R., Jombart, T., Kamvar, Z.N., Ross, N., 2020. RECON Guidelines.
Best Practices for Package Development. https://www.repidemicsconsortium.org/re
sources/guidelines/.

Den Boon, S., Jit, M., Brisson, M., Medley, G., Beutels, P., White, R., Flasche, S., et al.,
2019. Guidelines for multi-model comparisons of the impact of infectious disease
interventions. BMC Med. 17 (1), 163.

Eglen, S.J., 2020. CODECHECK Certificate for Paper: Report 9: Impact of Non-
Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare
Demand. March 16, 2020.

Ferguson, N.M., 2020. Tweet From @neil_ferguson. https://twitter.com/neil_ferguson/s
tatus/1241835454707699713.

Ferguson, N.M., MRC Centre for Global Infectious Disease Analysis, 2020. Covid-sim.
https://github.com/mrc-ide/covid-sim.

Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley, P.C., Burke, D.S.,
2006. Strategies for mitigating an influenza pandemic. Nature 442 (7101), 448–452.

Ferguson, N.M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M.,
Bhatia, S., et al., 2020. Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce
COVID-19 Mortality and Healthcare Demand. https://www.imperial.ac.uk/mrc-glo
bal-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/.

Guderlei, R., Mayer, J., 2007. Statistical metamorphic testing testing programs with
random output by means of statistical hypothesis tests and metamorphic testing. In:
Seventh International Conference on Quality Software (Qsic 2007). IEEE,
pp. 404–409.

Heesterbeek, H., Anderson, R.M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C.,
Eames, K.T.D., et al., 2015. Modeling infectious disease dynamics in the complex
landscape of global health. Science 347 (6227).

Hellewell, J., Abbott, S., Gimma, A., Bosse, N.I., Jarvis, C.I., Russell, T.W., Munday, J.D.,
et al., 2020. Feasibility of controlling COVID-19 outbreaks by isolation of cases and
contacts. Lancet.

Herndon, T., Ash, M., Pollin, R., 2014. Does High Public Debt Consistently Stifle
Economic Growth? A Critique of Reinhart and Rogoff.”. Cambridge J. Econ. 38 (2),
257–279.

Hester, J., 2020. Covr: Test Coverage for Packages. https://CRAN.R-project.org/
package=covr.

Hollingsworth, T.D., Medley, G.F., 2017. Learning from Multi-Model Comparisons:
Collaboration Leads to Insights, but Limitations Remain. Epidemics 18. https://doi.
org/10.1016/j.epidem.2017.02.014.

IHME COVID-19 health service utilization forecasting team, Murray, C.J.L., 2020.
Forecasting COVID-19 Impact on Hospital Bed-Days, ICU-days, Ventilator Days and
Deaths by US State in the Next 4 Months. medRxiv. https://doi.org/10.1101/
2020.03.27.20043752.

Jenness, S.M., Goodreau, S.M., Morris, M., 2018. EpiModel: an R package for
mathematical modeling of infectious disease over networks. J. Stat. Softw. 84.

T.C.D. Lucas et al.

http://www.github.com/timcdlucas/unit_test_for_infectious_disease
https://doi.org/10.5281/zenodo.4293667
https://doi.org/10.1016/j.epidem.2020.100425
https://doi.org/10.1200/JCO.2016.69.0875
https://www.timeshighereducation.com/news/pandemic-response-shines-spotlight-coding-science
https://www.timeshighereducation.com/news/pandemic-response-shines-spotlight-coding-science
https://www.timeshighereducation.com/news/pandemic-response-shines-spotlight-coding-science
https://www.bcs.org/media/5780/professionalising-software-development.pdf
https://www.bcs.org/media/5780/professionalising-software-development.pdf
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0020
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0020
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0020
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0020
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://github.com/JuliaLang/julia/blob/master/stdlib/Test/src/Test.jl
https://github.com/JuliaLang/julia/blob/master/stdlib/Test/src/Test.jl
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0035
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0035
https://www.nature.com/articles/d41586-020-01685-y
https://www.repidemicsconsortium.org/resources/guidelines/
https://www.repidemicsconsortium.org/resources/guidelines/
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0050
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0050
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0050
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0055
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0055
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0055
https://twitter.com/neil_ferguson/status/1241835454707699713
https://twitter.com/neil_ferguson/status/1241835454707699713
https://github.com/mrc-ide/covid-sim
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0070
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0070
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0080
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0080
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0080
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0080
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0085
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0085
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0085
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0090
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0090
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0090
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0095
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0095
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0095
https://CRAN.R-project.org/package=covr
https://CRAN.R-project.org/package=covr
https://doi.org/10.1016/j.epidem.2017.02.014
https://doi.org/10.1016/j.epidem.2017.02.014
https://doi.org/10.1101/2020.03.27.20043752
https://doi.org/10.1101/2020.03.27.20043752
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0115
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0115

Epidemics 33 (2020) 100425

11

NASA, 2020. Mariner 1. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?
id=MARIN1.

Neupane, B.J., Neupane, R.P., Luo, Y., Yoshida, W.Y., Sun, R., Williams, P.G., 2019.
Characterization of Leptazolines A–D, Polar Oxazolines from the Cyanobacterium
Leptolyngbya Sp., Reveals a Glitch with the ‘Willoughby–Hoye’ Scripts for
Calculating NMR Chemical Shifts. Org. Lett. 21 (20), 8449–8453.

Osborne, J.M., Bernabeu, M.O., Bruna, M., Calderhead, B., Cooper, J., Dalchau, N.,
Dunn, S.-J., et al., 2014. Ten simple rules for effective computational research. PLoS
Comput. Biol. 10 (3).

Patrick, M., Donnelly, R., Gilligan, C.A., 2017. A toolkit for testing stochastic simulations
against statistical oracles. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE, pp. 448–453.

Python Core Team, 2015a. Python V3.8.2: A Dynamic, Open Source Programming Language.
Python Software Foundation. https://www.python.org/.

Python Core Team, 2015b. Unittest V3.8.2: Unit Testing Framework. https://docs.pytho
n.org/3/library/unittest.html.

R Core Team, 2018. R V3.6.3: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Santos, B.O., Fernando, S.M., 2020. EpiDynamics: Dynamic Models in Epidemiology.
https://CRAN.R-project.org/package=EpiDynamics.

Ševčíková, H., Borning, A., Socha, D., Bleek, W.-G., 2006. Automated testing of stochastic
systems: a statistically grounded approach. Proceedings of the 2006 International
Symposium on Software Testing and Analysis, pp. 215–224.

SPI-M, 2020. Scientific Pandemic Influenza Group on Modelling (Spi-M). https://www.
gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling.

Wickham, H., 2011. Testthat V.2.3.2: get started with testing. R J. 3, 5–10. https://journ
al.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.

Wickham, H., 2015. O’Reilly Media, Inc. R Packages: Organize, Test, Document, and
Share Your Code.

Wickham, H., 2019. Advanced R First Edition. CRC press. http://adv-r.had.co.nz/Except
ions-Debugging.html.

Wickham, H., Hester, J., Chang, W., Studio, R., R Core Team, 2019. Devtools V2.3.0:
Tools to Make Developing R Packages Easier. https://CRAN.R-project.org/pack
age=devtools.

Willem, L., Verelst, F., Bilcke, J., Hens, N., Beutels, P., 2017. Lessons from a decade of
individual-based models for infectious disease transmission: a systematic review
(2006-2015). BMC Infect. Dis. 17 (1), 612.

Wilson, G., Aruliah, D.A., Titus, B.C., Chue, H.N.P., Davis, M., Guy, R.T., Haddock, S.H.
D., et al., 2014. Best practices for scientific computing. PLoS Biol. 12 (1).

T.C.D. Lucas et al.

https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0125
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0125
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0125
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0125
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0130
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0130
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0130
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0135
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0135
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0135
https://www.python.org/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://www.R-project.org/
https://CRAN.R-project.org/package=EpiDynamics
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0160
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0160
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0160
https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling
https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0175
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0175
http://adv-r.had.co.nz/Exceptions-Debugging.html
http://adv-r.had.co.nz/Exceptions-Debugging.html
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0190
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0190
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0190
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0195
http://refhub.elsevier.com/S1755-4365(20)30045-1/sbref0195

	Responsible modelling: Unit testing for infectious disease epidemiology
	1 Introduction
	2 Unit testing foundations
	3 An example multi-pathogen re-infection model
	4 Basic unit testing
	4.1 Write small functions
	4.2 Test simple cases first
	4.3 Test all arguments
	4.4 Does the function logic meet your expectations?
	4.5 Combine simple functions and test them at a higher level

	5 Stochastic code
	5.1 Split stochastic and deterministic parts
	5.2 Pick a smart parameter for a deterministic result
	5.3 Test all possible answers (if few)
	5.4 Use very large samples for the stochastic part

	6 Further testing
	6.1 Test incorrect inputs
	6.2 Test special cases
	6.3 Unit testing frameworks

	7 Continuous integration
	8 Concluding remarks
	Code availability
	Funding sources
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Supplementary data
	References

