316 research outputs found

    Multinucleon transfer processes in heavy-ion reactions

    Get PDF
    The main advances in the field of multinucleon transfer reactions at energies close to the Coulomb barrier are reviewed. After a short presentation of the experimental techniques and some gleams from the theory the new data are presented. The possibilities offered by the coupling of large γ-array detectors with tracking spectrometers are discussed

    A milk and ochre paint mixture used 49,000 years ago at Sibudu, South Africa

    Get PDF
    Gas chromatography/mass spectrometry, proteomic and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS) analyses of residue on a stone flake from a 49,000 year-old layer of Sibudu (South Africa) indicate a mixture of ochre and casein from milk, likely obtained by killing a lactating wild bovid. Ochre powder production and use are documented in Middle Stone Age South African sites but until now there has been no evidence of the use of milk as a binder. Our analyses show that this ochre-based mixture was neither a hafting adhesive nor a residue left after treating animal skins, but a liquid mixture consisting of a powdered pigment mixed with milk; in other words, a paint medium that could have been applied to a surface or to human skin. The significance of our finds also lies in the fact that it establishes the antiquity of the use of milk as a binder well before the introduction of domestic cattle in South Africa in the first millennium AD

    Light and heavy fragments mass correlation in the 197Au + 130Te transfer reaction

    Get PDF
    We studied multinucleon transfer (MNT) processes in the 197Au + 130Te at Elab=1.07 GeV system coupling the PRISMA magnetic spectrometer to NOSE, an ancillary particle detector. We constructed a mass correlation matrix associating to each light fragment identified in PRISMA the corresponding mass distribution of the heavy partner detected in NOSE and, through the comparison with Monte Carlo simulations, we could infer about the role of neutron evaporation in multinucleon transfer reactions for the population of neutron-rich heavy nuclei

    Pair neutron transfer in Ni 60 + Sn 116 probed via γ -particle coincidences

    Get PDF
    D. Montanari et al. ; 6 págs.; 5 figs.; 1 tab.We performed a γ-particle coincidence experiment for the Ni60+Sn116 system to investigate whether the population of the two-neutron pickup channel leading to Ni62 is mainly concentrated in the ground-state transition, as has been found in a previous work [D. Montanari et al., Phys. Rev. Lett. 113, 052501 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.052501]. The experiment has been performed by employing the PRISMA magnetic spectrometer coupled to the Advanced Gamma Tracking Array (AGATA) demonstrator. The strength distribution of excited states corresponding to the inelastic, one- and two-neutron transfer channels has been extracted. We found that in the two-neutron transfer channel the strength to excited states corresponds to a fraction (less than 24%) of the total, consistent with the previously obtained results that the 2n channel is dominated by the ground-state to ground-state transition. ©2016 American Physical SocietyThis work was partly supported by the EU FP7/2007-2013 under Grant No. 262010-ENSAR and by the Croatian Science Foundation under Project No. 7194. A.G. was partially supported by MINECO and Generalitat Valenciana, Spain, under Grants No. FPA2014-57196-C5 and No. PROMETEOII/2014/019 and the EU under the FEDER program.Peer Reviewe

    Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions

    Get PDF
    We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I

    Chaotic Scattering in Heavy--Ion Reactions

    Get PDF
    We discuss the relevance of chaotic scattering in heavy--ion reactions at energies around the Coulomb barrier. A model in two and three dimensions which takes into account rotational degrees of freedom is discussed both classically and quantum-mechanically. The typical chaotic features found in this description of heavy-ion collisions are connected with the anomalous behaviour of several experimental data.Comment: 35 pages in RevTex (version 3.0) plus 27 PostScript figures obtainable by anonymous ftp from VAXFCT.CT.INFN.IT in directory kaos. Fig. 1 upon request to the authors. To be published in the October Focus issue on chaotic scattering of CHAO

    Breakup of 17^{17}F on 208^{208}Pb near the Coulomb barrier

    Full text link
    Angular distributions of oxygen produced in the breakup of 17^{17}F incident on a 208^{208}Pb target have been measured around the grazing angle at beam energies of 98 and 120 MeV. The data are dominated by the proton stripping mechanism and are well reproduced by dynamical calculations. The measured breakup cross section is approximately a factor of 3 less than that of fusion at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure

    Transfer Reaction Studies with Spectrometers

    Get PDF
    The revival of transfer reaction studies benefited from the construction of the new generation large solid angle spectrometers, coupled to large gamma arrays. The recent results of gamma-particle coincident measurements in Ca-40+Zr-96 and Ar-40+Pb-208 reactions demonstrate a strong interplay between single-particle and collective degrees of freedom that is pertinent to the reaction dynamics. The development of collectivity has been followed in odd Ar isotopes populated in the Ar-40+Pb-208 reaction through the excitation of the 11/2(-) states, understood as the coupling of single particle degrees of freedom to nuclear vibration quanta. Pair transfer modes is another important degree of freedom which is presently being studied with Prisma in inverse kinematics at energies far below the Coulomb barrier. First results from the Zr-96+Ca-40 reaction elucidate the role played by nucleon-nucleon correlation

    Nature and decay of a JÏ€J\pi=36+36^{+} resonance in the 24^{24}Mg + 24^{24}Mg reaction

    No full text
    It has been proposed to associate the narrow (\Gamma=170 keV) and high spin (JÏ€J\pi=36^+) resonance in the 24Mg + 24Mg reaction at E_c.m= 45.7 MeV with a hyperdeformed molecular state in 48Cr. Such a description has important consequences for the resonance decay into the favoured inelastic channels. Through fragment- coincidence measurements performed ON and OFF resonance using the PRISMA-CLARA array, we have established that the 24Mg states selectively populated are the 2^+ and 4^+ members of the ground state band
    • …
    corecore