3,812 research outputs found

    The EU and Asia within an evolving global order: what is Europe? Where is Asia?

    Get PDF
    The papers in this special edition are a very small selection from those presented at the EU-NESCA (Network of European Studies Centres in Asia) conference on "the EU and East Asia within an Evolving Global Order: Ideas, Actors and Processes" in November 2008 in Brussels. The conference was the culmination of three years of research activity involving workshops and conferences bringing together scholars from both regions primarily to discuss relations between Europe and Asia, perceptions of Europe in Asia, and the relationship between the European regional project and emerging regional forms in Asia. But although this was the last of the three major conferences organised by the consortium, it in many ways represented a starting point rather than the end; an opportunity to reflect on the conclusions of the first phase of collaboration and point towards new and continuing research agendas for the future

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Changes in ozone and precursors during two aged wildfire smoke events in the Colorado Front Range in summer 2015

    Get PDF
    The relative importance of wildfire smoke for air quality over the western US is expected to increase as the climate warms and anthropogenic emissions decline. We report on in situ measurements of ozone (O3), a suite of volatile organic compounds (VOCs), and reactive oxidized nitrogen species collected during summer 2015 at the Boulder Atmospheric Observatory (BAO) in Erie, CO. Aged wildfire smoke impacted BAO during two distinct time periods during summer 2015: 6–10 July and 16–30 August. The smoke was transported from the Pacific Northwest and Canada across much of the continental US. Carbon monoxide and particulate matter increased during the smoke-impacted periods, along with peroxyacyl nitrates and several VOCs that have atmospheric lifetimes longer than the transport timescale of the smoke. During the August smoke-impacted period, nitrogen dioxide was also elevated during the morning and evening compared to the smoke-free periods. There were nine empirically defined high-O3 days during our study period at BAO, and two of these days were smoke impacted. We examined the relationship between O3 and temperature at BAO and found that for a given temperature, O3 mixing ratios were greater (âˆŒâ€Ż10 ppbv) during the smoke-impacted periods. Enhancements in O3 during the August smoke-impacted period were also observed at two long-term monitoring sites in Colorado: Rocky Mountain National Park and the Arapahoe National Wildlife Refuge near Walden, CO. Our data provide a new case study of how aged wildfire smoke can influence atmospheric composition at an urban site, and how smoke can contribute to increased O3 abundances across an urban–rural gradient

    A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport

    Full text link
    We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density SI(f)S_I (f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher ff, there is a crossover to a broad range of frequencies in which SI(f)S_I (f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor F\equiv S_I(f)/2e \left. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F=1), scaling with the length LL of the conductor as F=(Lc/L)αF = (L_c / L)^{\alpha}. The exponent α\alpha is significantly affected by the Coulomb interaction effects, changing from α=0.76±0.08\alpha = 0.76 \pm 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter LcL_c, interpreted as the average percolation cluster length along the electric field direction, scales as Lc∝E−(0.98±0.08)L_c \propto E^{-(0.98 \pm 0.08)} when Coulomb interaction effects are negligible and Lc∝E−(1.26±0.15)L_c \propto E^{-(1.26 \pm 0.15)} when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference

    Critical behavior of thermopower and conductivity at the metal-insulator transition in high-mobility Si-MOSFET's

    Get PDF
    This letter reports thermopower and conductivity measurements through the metal-insulator transition for 2-dimensional electron gases in high mobility Si-MOSFET's. At low temperatures both thermopower and conductivity show critical behavior as a function of electron density which is very similar to that expected for an Anderson transition. In particular, when approaching the critical density from the metallic side the diffusion thermopower appears to diverge and the conductivity vanishes. On the insulating side the thermopower shows an upturn with decreasing temperature.Comment: 4 pages with 3 figure

    Sub-electron Charge Relaxation via 2D Hopping Conductors

    Full text link
    We have extended Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the process of external charge relaxation. In this situation, a conductor of area L×WL \times W shunts an external capacitor CC with initial charge QiQ_i. At low temperatures, the charge relaxation process stops at some "residual" charge value corresponding to the effective threshold of the Coulomb blockade of hopping. We have calculated the r.m.s.. value QRQ_R of the residual charge for a statistical ensemble of capacitor-shunting conductors with random distribution of localized sites in space and energy and random QiQ_i, as a function of macroscopic parameters of the system. Rather unexpectedly, QRQ_{R} has turned out to depend only on some parameter combination: X0≡LWÎœ0e2/CX_0 \equiv L W \nu_0 e^2/C for negligible Coulomb interaction and XÏ‡â‰ĄLWÎș2/C2X_{\chi} \equiv LW \kappa^2/C^{2} for substantial interaction. (Here Îœ0\nu_0 is the seed density of localized states, while Îș\kappa is the dielectric constant.) For sufficiently large conductors, both functions QR/e=F(X)Q_{R}/e =F(X) follow the power law F(X)=DX−ÎČF(X)=DX^{-\beta}, but with different exponents: ÎČ=0.41±0.01\beta = 0.41 \pm 0.01 for negligible and ÎČ=0.28±0.01\beta = 0.28 \pm 0.01 for significant Coulomb interaction. We have been able to derive this law analytically for the former (most practical) case, and also explain the scaling (but not the exact value of the exponent) for the latter case. In conclusion, we discuss possible applications of the sub-electron charge transfer for "grounding" random background charge in single-electron devices.Comment: 12 pages, 5 figures. In addition to fixing minor typos and updating references, the discussion has been changed and expande

    Modeling the gas-phase chemistry of the transitional disk around HD 141569A

    Full text link
    Aims: The chemistry, distribution and mass of the gas in the transitional disk around the 5 Myr old B9.5 V star HD 141569A are constrained. Methods: A quasi 2-dimensional (2D) chemistry code for photon dominated regions (PDR) is used to calculate the chemistry and gas temperatures in the disk. The calculations are performed for several gas distributions, PAH abundances and values of the total gas mass. The resulting CO J=2-1 and J=3-2 emission lines are computed with a 2D radiative transfer code and are compared to observations. Results: The CO abundance is very sensitive to the total disk mass because the disk is in a regime where self-shielding just sets in. The observed CO emission lines are best fit by a power-law gas distribution of 80 M_earth starting at 80 AU from the central star, indicating that there is some gas in the inner hole. Predictions are made for intensities of atomic fine-structure lines. [C I], which is the dominant form of carbon in large parts of the disk, is found to be a good alternative tracer of the gas mass.Comment: 11 pages, 9 figures. Accepted for publication in A&

    A Numerical Study of Transport and Shot Noise at 2D Hopping

    Full text link
    We have used modern supercomputer facilities to carry out extensive Monte Carlo simulations of 2D hopping (at negligible Coulomb interaction) in conductors with the completely random distribution of localized sites in both space and energy, within a broad range of the applied electric field EE and temperature TT, both within and beyond the variable-range hopping region. The calculated properties include not only dc current and statistics of localized site occupation and hop lengths, but also the current fluctuation spectrum. Within the calculation accuracy, the model does not exhibit 1/f1/f noise, so that the low-frequency noise at low temperatures may be characterized by the Fano factor FF. For sufficiently large samples, FF scales with conductor length LL as (Lc/L)α(L_c/L)^{\alpha}, where α=0.76±0.08<1\alpha=0.76\pm 0.08 < 1, and parameter LcL_c is interpreted as the average percolation cluster length. At relatively low EE, the electric field dependence of parameter LcL_c is compatible with the law Lc∝E−0.911L_c\propto E^{-0.911} which follows from directed percolation theory arguments.Comment: 17 pages, 8 figures; Fixed minor typos and updated reference

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57
    • 

    corecore