170 research outputs found
Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope
The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the
nuclear envelope. How the NPC assembles into this double membrane boundary has remained
enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell
imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates
were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and
depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence
microscopy revealed the molecular maturation of the intermediates, which initially contained the
nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament
component Nup358. EM particle averaging showed that the evagination base was surrounded by
an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroomshaped
density was continuously associated with the deforming membrane. Quantitative structural
analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of
the INM
No imminent quantum supremacy by boson sampling
It is predicted that quantum computers will dramatically outperform their
conventional counterparts. However, large-scale universal quantum computers are
yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to
the platform of photons in linear optics, which has sparked interest as a rapid
way to demonstrate this quantum supremacy. Photon statistics are governed by
intractable matrix functions known as permanents, which suggests that sampling
from the distribution obtained by injecting photons into a linear-optical
network could be solved more quickly by a photonic experiment than by a
classical computer. The contrast between the apparently awesome challenge faced
by any classical sampling algorithm and the apparently near-term experimental
resources required for a large boson sampling experiment has raised
expectations that quantum supremacy by boson sampling is on the horizon. Here
we present classical boson sampling algorithms and theoretical analyses of
prospects for scaling boson sampling experiments, showing that near-term
quantum supremacy via boson sampling is unlikely. While the largest boson
sampling experiments reported so far are with 5 photons, our classical
algorithm, based on Metropolised independence sampling (MIS), allowed the boson
sampling problem to be solved for 30 photons with standard computing hardware.
We argue that the impact of experimental photon losses means that demonstrating
quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom
Crowding Alone Cannot Account for Cosolute Effect on Amyloid Aggregation
Amyloid fiber formation is a specific form of protein aggregation, often resulting from the misfolding of native proteins. Aimed at modeling the crowded environment of the cell, recent experiments showed a reduction in fibrillation halftimes for amyloid-forming peptides in the presence of cosolutes that are preferentially excluded from proteins and peptides. The effect of excluded cosolutes has previously been attributed to the large volume excluded by such inert cellular solutes, sometimes termed “macromolecular crowding”. Here, we studied a model peptide that can fold to a stable monomeric β-hairpin conformation, but under certain solution conditions aggregates in the form of amyloid fibrils. Using Circular Dichroism spectroscopy (CD), we found that, in the presence of polyols and polyethylene glycols acting as excluded cosolutes, the monomeric β-hairpin conformation was stabilized with respect to the unfolded state. Stabilization free energy was linear with cosolute concentration, and grew with molecular volume, as would also be predicted by crowding models. After initiating the aggregation process with a pH jump, fibrillation in the presence and absence of cosolutes was followed by ThT fluorescence, transmission electron microscopy, and CD spectroscopy. Polyols (glycerol and sorbitol) increased the lag time for fibril formation and elevated the amount of aggregated peptide at equilibrium, in a cosolute size and concentration dependent manner. However, fibrillation rates remained almost unaffected by a wide range of molecular weights of soluble polyethylene glycols. Our results highlight the importance of other forces beyond the excluded volume interactions responsible for crowding that may contribute to the cosolute effects acting on amyloid formation
Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes
Recent years have witnessed an increasing interest in neuron-glia
communication. This interest stems from the realization that glia participates
in cognitive functions and information processing and is involved in many brain
disorders and neurodegenerative diseases. An important process in neuron-glia
communications is astrocyte encoding of synaptic information transfer: the
modulation of intracellular calcium dynamics in astrocytes in response to
synaptic activity. Here, we derive and investigate a concise mathematical model
for glutamate-induced astrocytic intracellular Ca2+ dynamics that captures the
essential biochemical features of the regulatory pathway of inositol
1,4,5-trisphosphate (IP3). Starting from the well-known two-state Li-Rinzel
model for calcium-induced-calcium release, we incorporate the regulation of the
IP3 production and phosphorylation. Doing so we extended it to a three-state
model (referred as the G-ChI model), that could account for Ca2+ oscillations
triggered by endogenous IP3 metabolism as well as by IP3 production by external
glutamate signals. Compared to previous similar models, our three-state models
include a more realistic description of the IP3 production and degradation
pathways, lumping together their essential nonlinearities within a concise
formulation. Using bifurcation analysis and time simulations, we demonstrate
the existence of new putative dynamical features. The cross-couplings between
IP3 and Ca2+ pathways endows the system with self-consistent oscillator
properties and favor mixed frequency-amplitude encoding modes over pure
amplitude modulation ones. These and additional results of our model are in
general agreement with available experimental data and may have important
implications on the role of astrocytes in the synaptic transfer of information.Comment: 42 pages, 16 figures, 1 table. Figure filenames mirror figure order
in the paper. Ending "S" in figure filenames stands for "Supplementary
Figure". This article was selected by the Faculty of 1000 Biology: "Genevieve
Dupont: Faculty of 1000 Biology, 4 Sep 2009" at
http://www.f1000biology.com/article/id/1163674/evaluatio
NMR methods to monitor the enzymatic depolymerization of heparin
Heparin and the related glycosaminoglycan, heparan sulfate, are polydisperse linear polysaccharides that mediate numerous biological processes due to their interaction with proteins. Because of the structural complexity and heterogeneity of heparin and heparan sulfate, digestion to produce smaller oligosaccharides is commonly performed prior to separation and analysis. Current techniques used to monitor the extent of heparin depolymerization include UV absorption to follow product formation and size exclusion or strong anion exchange chromatography to monitor the size distribution of the components in the digest solution. In this study, we used 1H nuclear magnetic resonance (NMR) survey spectra and NMR diffusion experiments in conjunction with UV absorption measurements to monitor heparin depolymerization using the enzyme heparinase I. Diffusion NMR does not require the physical separation of the components in the reaction mixture and instead can be used to monitor the reaction solution directly in the NMR tube. Using diffusion NMR, the enzymatic reaction can be stopped at the desired time point, maximizing the abundance of larger oligosaccharides for protein-binding studies or completion of the reaction if the goal of the study is exhaustive digestion for characterization of the disaccharide composition. In this study, porcine intestinal mucosa heparin was depolymerized using the enzyme heparinase I. The unsaturated bond formed by enzymatic cleavage serves as a UV chromophore that can be used to monitor the progress of the depolymerization and for the detection and quantification of oligosaccharides in subsequent separations. The double bond also introduces a unique multiplet with peaks at 5.973, 5.981, 5.990, and 5.998Â ppm in the 1H-NMR spectrum downfield of the anomeric region. This multiplet is produced by the proton of the C-4 double bond of the non-reducing end uronic acid at the cleavage site. Changes in this resonance were used to monitor the progression of the enzymatic digestion and compared to the profile obtained from UV absorbance measurements. In addition, in situ NMR diffusion measurements were explored for their ability to profile the different-sized components generated over the course of the digestion
- …