230 research outputs found

    Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea

    Get PDF
    Mutations in the genes encoding for gap junction proteins connexin 26 (Cx26) and connexin 30 (Cx30) have been linked to syndromic and nonsyndromic hearing loss in mice and humans. The release of ATP from connexin hemichannels in cochlear nonsensory cells has been proposed to be the main trigger for action potential activity in immature sensory inner hair cells (IHCs), which is crucial for the refinement of the developing auditory circuitry. Using connexin knock-out mice, we show that IHCs fire spontaneous action potentials even in the absence of ATP-dependent intercellular Ca(2+) signaling in the nonsensory cells. However, this signaling from nonsensory cells was able to increase the intrinsic IHC firing frequency. We also found that connexin expression is key to IHC functional maturation. In Cx26 conditional knock-out mice (Cx26(Sox10-Cre)), the maturation of IHCs, which normally occurs at approximately postnatal day 12, was partially prevented. Although Cx30 has been shown not to be required for hearing in young adult mice, IHCs from Cx30 knock-out mice exhibited a comprehensive brake in their development, such that their basolateral membrane currents and synaptic machinery retain a prehearing phenotype. We propose that IHC functional differentiation into mature sensory receptors is initiated in the prehearing cochlea provided that the expression of either connexin reaches a threshold level. As such, connexins regulate one of the most crucial functional refinements in the mammalian cochlea, the disruption of which contributes to the deafness phenotype observed in mice and DFNB1 patients. SIGNIFICANCE STATEMENT: The correct development and function of the mammalian cochlea relies not only on the sensory hair cells, but also on the surrounding nonsensory cells. Although the nonsensory cells have been largely implicated in the general homeostasis in the mature cochlea, their involvement in the initial functional differentiation of the sensory inner hair cells is less clear. Using mutant mouse models for the most common form of congenital deafness in humans, which are knock-outs for the gap-junction channels connexin 26 and connexin 30 genes, we show that defects in nonsensory cells prevented the functional maturation of inner hair cells. In connexin knock-outs, inner hair cells remained stuck at a prehearing stage of development and, as such, are unable to process sound information

    Cohomology Groups of Deformations of Line Bundles on Complex Tori

    Full text link
    The cohomology groups of line bundles over complex tori (or abelian varieties) are classically studied invariants of these spaces. In this article, we compute the cohomology groups of line bundles over various holomorphic, non-commutative deformations of complex tori. Our analysis interpolates between two extreme cases. The first case is a calculation of the space of (cohomological) theta functions for line bundles over constant, commutative deformations. The second case is a calculation of the cohomologies of non-commutative deformations of degree-zero line bundles.Comment: 24 pages, exposition improved, typos fixe

    Cladoceran birth and death rates estimates

    Get PDF
    I. Birth and death rates of natural cladoceran populations cannot be measured directly. Estimates of these population parameters must be calculated using methods that make assumptions about the form of population growth. These methods generally assume that the population has a stable age distribution. 2. To assess the effect of variable age distributions, we tested six egg ratio methods for estimating birth and death rates with data from thirty-seven laboratory populations of Daphnia pulicaria. The populations were grown under constant conditions, but the initial age distributions and egg ratios of the populations varied. Actual death rates were virtually zero, so the difference between the estimated and actual death rates measured the error in both birth and death rate estimates. 3. The results demonstrate that unstable population structures may produce large errors in the birth and death rates estimated by any of these methods. Among the methods tested, Taylor and Slatkin's formula and Paloheimo's formula were most reliable for the experimental data. 4. Further analyses of three of the methods were made using computer simulations of growth of age-structured populations with initially unstable age distributions. These analyses show that the time interval between sampling strongly influences the reliability of birth and death rate estimates. At a sampling interval of 2.5 days (equal to the duration of the egg stage), Paloheimo's formula was most accurate. At longer intervals (7.5–10 days), Taylor and Slatkin's formula which includes information on population structure was most accurate

    Split structures in general relativity and the Kaluza-Klein theories

    Get PDF
    We construct a general approach to decomposition of the tangent bundle of pseudo-Riemannian manifolds into direct sums of subbundles, and the associated decomposition of geometric objects. An invariant structure {\cal H}^r defined as a set of r projection operators is used to induce decomposition of the geometric objects into those of the corresponding subbundles. We define the main geometric objects characterizing decomposition. Invariant non-holonomic generalizations of the Gauss-Codazzi-Ricci's relations have been obtained. All the known types of decomposition (used in the theory of frames of reference, in the Hamiltonian formulation for gravity, in the Cauchy problem, in the theory of stationary spaces, and so on) follow from the present work as special cases when fixing a basis and dimensions of subbundles, and parameterization of a basis of decomposition. Various methods of decomposition have been applied here for the Unified Multidimensional Kaluza-Klein Theory and for relativistic configurations of a perfect fluid. Discussing an invariant form of the equations of motion we have found the invariant equilibrium conditions and their 3+1 decomposed form. The formulation of the conservation law for the curl has been obtained in the invariant form.Comment: 30 pages, RevTeX, aps.sty, some additions and corrections, new references adde

    Magnetic Gaps related to Spin Glass Order in Fermionic Systems

    Full text link
    We provide evidence for spin glass related magnetic gaps in the fermionic density of states below the freezing temperature. Model calculations are presented and proposed to be relevant for explaining resistivity measurements which observe a crossover from variable-range- to activated behavior. The magnetic field dependence of a hardgap and the low temperature decay of the density of states are given. In models with fermion transport a new metal-insulator transition is predicted to occur due to the spin-glass gap, anteceding the spin glass to quantum paramagnet transition at smaller spin density. Important fluctuation effects due to finite range frustrated interactions are estimated and discussed.Comment: 4 pages, 1 Postscript figure, revised version accepted for publication in Physical Review Letter

    Computing Yukawa Couplings from Magnetized Extra Dimensions

    Full text link
    We compute Yukawa couplings involving chiral matter fields in toroidal compactifications of higher dimensional super-Yang-Mills theory with magnetic fluxes. Specifically we focus on toroidal compactifications of D=10 super-Yang-Mills theory, which may be obtained as the low-energy limit of Type I, Type II or Heterotic strings. Chirality is obtained by turning on constant magnetic fluxes in each of the 2-tori. Our results are general and may as well be applied to lower D=6,8 dimensional field theories. We solve Dirac and Laplace equations to find out the explicit form of wavefunctions in extra dimensions. The Yukawa couplings are computed as overlap integrals of two Weyl fermions and one complex scalar over the compact dimensions. In the case of Type IIB (or Type I) string theories, the models are T-dual to (orientifolded) Type IIA with D6-branes intersecting at angles. These theories may have phenomenological relevance since particular models with SM group and three quark-lepton generations have been recently constructed. We find that the Yukawa couplings so obtained are described by Riemann theta-functions, which depend on the complex structure and Wilson line backgrounds. Different patterns of Yukawa textures are possible depending on the values of these backgrounds. We discuss the matching of these results with the analogous computation in models with intersecting D6-branes. Whereas in the latter case a string computation is required, in our case only field theory is needed.Comment: 73 pages, 9 figures. Using JHEP3.cls. Typos and other minor corrections fixed. References adde

    Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids

    Full text link
    Recently it has been experimentally demonstrated that certain glasses display an unexpected magnetic field dependence of the dielectric constant. In particular, the echo technique experiments have shown that the echo amplitude depends on the magnetic field. The analysis of these experiments results in the conclusion that the effect seems to be related to the nuclear degrees of freedom of tunneling systems. The interactions of a nuclear quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with magnetic field transform the two-level tunneling systems inherent in amorphous dielectrics into many-level tunneling systems. The fact that these features show up at temperatures T<100mKT<100mK, where the properties of amorphous materials are governed by the long-range R3R^{-3} interaction between tunneling systems, suggests that this interaction is responsible for the magnetic field dependent relaxation. We have developed a theory of many-body relaxation in an ensemble of interacting many-level tunneling systems and show that the relaxation rate is controlled by the magnetic field. The results obtained correlate with the available experimental data. Our approach strongly supports the idea that the nuclear quadrupole interaction is just the key for understanding the unusual behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure

    A local 2-approximation algorithm for the vertex cover problem

    Get PDF
    We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.Peer reviewe

    Some Cubic Couplings in Type IIB Supergravity on AdS5×S5AdS_5\times S^5 and Three-point Functions in SYM_4 at Large N

    Full text link
    All cubic couplings in type IIB supergravity on AdS5×S5AdS_5\times S^5 that involve two scalar fields sIs^I that are mixtures of the five form field strength on S5S^5 and the trace of the graviton on S5S^5 are derived by using the covariant equations of motion and the quadratic action for type IIB supergravity on AdS5×S5AdS_5\times S^5. All corresponding three-point functions in SYM4_4 are calculated in the supergravity approximation. It is pointed out that the scalars sIs^I correspond not to the chiral primary operators in the N=4{\cal N}=4 SYM but rather to a proper extension of the operators.Comment: Latex, 24p, misprints are correcte
    corecore