183 research outputs found

    Semiclassical treatment of logarithmic perturbation theory

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon ℏ\hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by λx6\lambda x^{6} are considered.Comment: 6 pages, LATEX 2.09 using IOP style

    Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th

    Full text link
    Evidence for the existence of a superheavy nucleus with atomic mass number A=292 and abundance (1-10)x10^(-12) relative to 232Th has been found in a study of natural Th using inductively coupled plasma-sector field mass spectrometry. The measured mass matches the predictions [1,2] for the mass of an isotope with atomic number Z=122 or a nearby element. Its estimated half-life of t1/2 >= 10^8 y suggests that a long-lived isomeric state exists in this isotope. The possibility that it might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.[3-6]Comment: 14 pages, 5 figure

    Logarithmic perturbation theory for quasinormal modes

    Get PDF
    Logarithmic perturbation theory (LPT) is developed and applied to quasinormal modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially convenient because summation over a complete set of unperturbed states is not required. Attention is paid to potentials with exponential tails, and the example of a Poschl-Teller potential is briefly discussed. A numerical method is developed that handles the exponentially large wavefunctions which appear in dealing with QNMs.Comment: 24 pages, 4 Postscript figures, uses ioplppt.sty and epsfig.st

    Shell closure effects studied via cluster decay in heavy nuclei

    Full text link
    The effects of shell closure in nuclei via the cluster decay is studied. In this context, we have made use of the Preformed Cluster Model (PCMPCM) of Gupta and collaborators based on the Quantum Mechanical Fragmentation Theory. The key point in the cluster radioactivity is that it involves the interplay of close shell effects of parent and daughter. Small half life for a parent indicates shell stabilized daughter and long half life indicates the stability of the parent against the decay. In the cluster decay of trans lead nuclei observed so far, the end product is doubly magic lead or its neighbors. With this in our mind we have extended the idea of cluster radioactivity. We investigated decay of different nuclei where Zirconium is always taken as a daughter nucleus, which is very well known deformed nucleus. The branching ratio of cluster decay and α\alpha-decay is also studied for various nuclei, leading to magic or almost doubly magic daughter nuclei. The calculated cluster decay half-life are in well agreement with the observed data. First time a possibility of cluster decay in 218U^{218}U nucleus is predicted

    Theoretical analysis of the role of chromatin interactions in long-range action of enhancers and insulators

    Get PDF
    Long-distance regulatory interactions between enhancers and their target genes are commonplace in higher eukaryotes. Interposed boundaries or insulators are able to block these long distance regulatory interactions. The mechanistic basis for insulator activity and how it relates to enhancer action-at-a-distance remains unclear. Here we explore the idea that topological loops could simultaneously account for regulatory interactions of distal enhancers and the insulating activity of boundary elements. We show that while loop formation is not in itself sufficient to explain action at a distance, incorporating transient non-specific and moderate attractive interactions between the chromatin fibers strongly enhances long-distance regulatory interactions and is sufficient to generate a euchromatin-like state. Under these same conditions, the subdivision of the loop into two topologically independent loops by insulators inhibits inter-domain interactions. The underlying cause of this effect is a suppression of crossings in the contact map at intermediate distances. Thus our model simultaneously accounts for regulatory interactions at a distance and the insulator activity of boundary elements. This unified model of the regulatory roles of chromatin loops makes several testable predictions that could be confronted with \emph{in vitro} experiments, as well as genomic chromatin conformation capture and fluorescent microscopic approaches.Comment: 10 pages, originally submitted to an (undisclosed) journal in May 201

    High orders of the perturbation theory for hydrogen atom in magnetic field

    Get PDF
    The states of hydrogen atom with principal quantum number n≤3n\le3 and zero magnetic quantum number in constant homogeneous magnetic field H{\cal H} are considered. The coefficients of energy eigenvalues expansion up to 75th order in powers of H2{\cal H}^2 are obtained for these states. The series for energy eigenvalues and wave functions are summed up to H{\cal H} values of the order of atomic magnetic field. The calculations are based on generalization of the moment method, which may be used in other cases of the hydrogen atom perturbation by a polynomial in coordinates potential.Comment: 16 pages, LaTeX, 6 figures (ps, eps

    Perturbative Approach to the Quasinormal Modes of Dirty Black Holes

    Get PDF
    Using a recently developed perturbation theory for uasinormal modes (QNM's), we evaluate the shifts in the real and imaginary parts of the QNM frequencies due to a quasi-static perturbation of the black hole spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple model based on the scalar wave equation.Comment: Published in PR

    Systematics of Fission Barriers in Superheavy Elements

    Get PDF
    We investigate the systematics of fission barriers in superheavy elements in the range Z = 108-120 and N = 166-182. Results from two self-consistent models for nuclear structure, the relativistic mean-field (RMF) model as well as the non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We restrict ourselves to axially symmetric shapes, which provides an upper bound on static fission barriers. We benchmark the predictive power of the models examining the barriers and fission isomers of selected heavy actinide nuclei for which data are available. For both actinides and superheavy nuclei, the RMF model systematically predicts lower barriers than most Skyrme interactions. In particular the fission isomers are predicted too low by the RMF, which casts some doubt on recent predictions about superdeformed ground states of some superheavy nuclei. For the superheavy nuclei under investigation, fission barriers drop to small values around Z = 110, N = 180 and increase again for heavier systems. For most of the forces, there is no fission isomer for superheavy nuclei, as superdeformed states are in most cases found to be unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac

    Scaling Laws and Transient Times in 3He Induced Nuclear Fission

    Full text link
    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available at http://csa5.lbl.gov/moretto/ps/he3_paper.p

    Shell structure and orbit bifurcations in finite fermion systems

    Full text link
    We first give an overview of the shell-correction method which was developed by V. M. Strutinsky as a practicable and efficient approximation to the general selfconsistent theory of finite fermion systems suggested by A. B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the "periodic orbit theory". We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called "superdeformed" energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).Comment: LaTeX, 67 pp., 30 figures; revised version (missing part at end of 3.1 implemented; order of references corrected
    • …
    corecore