6 research outputs found

    Stepwise strategy based on 1H-NMR fingerprinting in combination with chemometrics to determine the content of vegetable oils in olive oil mixtures

    Get PDF
    1H NMR fingerprinting of edible oils and a set of multivariate classification and regression models organised in a decision tree is proposed as a stepwise strategy to assure the authenticity and traceability of olive oils and their declared blends with other vegetable oils (VOs). Oils of the ‘virgin olive oil’ and ‘olive oil’ categories and their mixtures with the most common VOs, i.e. sunflower, high oleic sunflower, hazelnut, avocado, soybean, corn, refined palm olein and desterolized high oleic sunflower oils, were studied. Partial least squares (PLS) discriminant analysis provided stable and robust binary classification models to identify the olive oil type and the VO in the blend. PLS regression afforded models with excellent precisions and acceptable accuracies to determine the percentage of VO in the mixture. The satisfactory performance of this approach, tested with blind samples, confirm its potential to support regulations and control bodies

    Actuation Selection for Assistive Exoskeletons: Matching Capabilities to Task Requirements

    No full text
    Selecting actuators for assistive exoskeletons involves decisions in which designers usually face contrasting requirements. While certain choices may depend on the application context or design philosophy, it is generally desirable to avoid oversizing actuators in order to obtain more lightweight and transparent systems, ultimately promoting the adoption of a given device. In many cases, the torque and power requirements can be relaxed by exploiting the contribution of an elastic element acting in mechanical parallel. This contribution considers one such case and introduces a methodology for the evaluation of different actuator choices resulting from the combination of different motors, reduction gears, and parallel stiffness profiles, helping to match actuator capabilities to the task requirements. Such methodology is based on a graphical tool showing how different design choices affect the actuator as a whole. To illustrate the approach, a back-support exoskeleton for lifting tasks is considered as a case study

    Basic functionality of a prototype wearable assistive soft exoskeleton for people with gait impairments: a case study

    No full text
    XoSoft is a soft modular wearable assistive exoskeleton for peo- ple with mild to moderate gait impairments. It is currently being developed by a European Consortium (www.xosoft.eu) and aims to provide tailored and active lower limb support during ambu- lation. During development, user-centered design principles were followed in parallel with the aim of providing functional support during gait. A prototype was developed and was tested for practi- cability, usability, comfort and assistive function (summarized as basic functionality) with a potential end user. The prototype con- sisted of a garment, electromagnetic clutch-controlled elastic bands supporting knee- and hip flexion and a backpack containing the sensor and actuator control of the system. The participant had ex- perienced a stroke and presented with unilateral impairment of the lower and upper extremities. In testing, he donned and doffed the prototype independently as far as possible, and performed walk- ing trials with the system in both active (powered on) and pas- sive (powered off) modes. Afterwards, the participant rated the perceived pressure and various elements of usability. Results high- lighted aspects of the system for improvement during future phases of XoSoft development, and also identified useful aspects of proto- type design to be maintained. The basic functionality of XoSoft could be assumed as satisfactory given that it was the first version of a working prototype. The study highlights the benefits of this participatory evaluation design approach in assistive soft robotics development

    Clinical practice use of liquid biopsy to identify RAS/BRAF mutations in patients with metastatic colorectal cancer (mCRC): A single institution experience

    No full text
    Tumor heterogeneity represents a possible cause of error in detecting predictive genetic alterations on tumor tissue and can be overcome by testing alterations in circulating tumor DNA (ctDNA) using liquid biopsy. We assessed 72 consecutive patients with a diagnosis of metastatic colorectal cancer (mCRC) using Idylla™ Biocartis, a fully automated platform that evaluates the most frequent mutations of KRAS, NRAS and BRAF genes. We correlated the results of liquid biopsy and standard tissue-based next generation sequencing (NGS) analyses to patient clinical features. The overall agreement was 81.94%. Concordance was 85.71% and 96.15% in treatment-naïve patients and in the patient subgroup with liver metastases, respectively. In liver metastases positive, treatment-naïve patients, sensitivity, specificity and positive predictive value (PPV) were 92.31%, 100% and 100%, respectively. Circulating mutational fraction (CMF) was significantly higher in patients with liver metastases and high carcinoembryonic antigen (CEA) levels. In a subgroup of patients pre-treated with anti-Epidermal Growth Factor Receptor (EGFR) agents, emerging KRAS mutations were evidenced in 33% of cases. Testing RAS/BRAF mutations on plasma using the Idylla™ Biocartis platform is feasible and reliable in mCRC patients in clinical practice

    Feasibility of next-generation sequencing in clinical practice: Results of a pilot study in the Department of Precision Medicine at the University of Campania ' Luigi Vanvitelli'

    No full text
    Background The emerging role of next-generation sequencing (NGS) targeted panels is revolutionising our approach to cancer patients, providing information on gene alterations helpful for diagnosis and clinical decision, in a short time and with acceptable costs. Materials and methods In this work, we evaluated the clinical application of FoundationOne CDx test, a hybrid capture-based NGS. This test identifies alterations in 324 genes, tumour mutational burden and genomic signatures as microsatellite instability. The decision to obtain the NGS assay for a particular patient was done according to investigator's choice. Results Overall, 122 tumour specimens were analysed, of which 84 (68.85%) succeeded. The success rate was influenced by type of specimen formalin-fixed paraffin embedded (FFPE block vs FFPE slides), by origin of the sample (surgery vs biopsy) and by time of fixation (<5 years vs ≥5 years). The most frequent subgroups of effective reports derived from colorectal cancer (25 samples), non-small-cell lung cancer (16 samples), ovarian cancer (10 samples), biliary tract cancer (9 samples), breast cancer (7 samples), gastric cancer (7 samples). The most frequent alterations found in whole population referred to TP53 (45.9%), KRAS (19.6%) and APC (13.9%). Furthermore, we performed an analysis of patients in whom this comprehensive genomic profiling (CGP) had a relevance for the patient's disease. Conclusions On our opinion, CGP could be proposed in clinical practice in order to select patients that could most benefit from the analysis proposed, like patients with good performance status without any available treatments or with unexpected resistance to a therapy
    corecore