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Abstract 35 

1H-NMR fingerprinting of edible oils and a set of multivariate classification and regression models 36 

organised in a decision tree is proposed as a stepwise strategy to assure the authenticity and 37 

traceability of olive oils and their declared blends with other vegetable oils (VOs). Oils of the 38 

‘virgin olive oil’ and ‘olive oil’ categories and their mixtures with the most common VOs, i.e. 39 

sunflower, high oleic sunflower, hazelnut, avocado, soybean, corn, refined palm olein and 40 

desterolized high oleic sunflower oils, were studied. Partial least squares (PLS) discriminant 41 

analysis provided stable and robust binary classification models to identify the olive oil type and the 42 

VO in the blend. PLS regression afforded models with excellent precisions and acceptable 43 

accuracies to determine the percentage of VO in the mixture. The satisfactory performance of this 44 

approach, tested with blind samples, confirm its potential to support regulations and control bodies. 45 

46 
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1. Introduction50 

The high price of olive oil, the distinctive sensory profile, and its reputation as a healthy source of 51 

dietary fats make olive oil a target for fraud. The most common types of olive oil fraud are illegal 52 

blending with other vegetable oils (VOs) or low-quality olive oils, deliberate mislabelling of less 53 

expensive classes of olive oils, other vegetable oils or their blends with olive oils, and mislabelling 54 

of the geographical origin or Protected Designation of Origin declaration. Indeed, the European 55 

Parliament pointed out that olive oil adulteration has become one of the biggest financial fraud in 56 

the agricultural sector, and evidenced the need to update and harmonize analytical methods for 57 

quality and authenticity control of olive oil (EC, 2020; European Parliament, 2014). In this context, 58 

the so-called OLEUM Project was supported by the European Commission with the overall 59 

objective of improving existing analytical methods and developing new strategies of analysis for 60 

assuring the quality and authenticity of olive oil (OLEUM Project, 2016). 61 

The EU Regulation 29/2012 standardises the labelling of all olive oil categories and their mixtures 62 

with other VOs, allowing to highlight the presence of olive oil on the label outside the ingredient 63 

list, only if it accounts for at least 50% of the blend (EC, 2012). However, this regulation and its 64 

amendments do not refer to any analytical parameter or method to control the percentage of olive 65 

oil in the admixture or the botanical origin of oil. The need of analytical methods to confirm the 66 

presence of olive oil in the blend, to distinguish pure and adulterated olive oils, to identify the 67 

adulterant oils in the mixture, as well as to determine the percentage of olive oil and the adulterants 68 

in the blend, is evidenced and is an issue of major concern in order to implement the established 69 

regulations (Conte, Bendini, Valli, Lucci, Moret, Maquet, et al., 2020). In literature, few works deal 70 

with the verification of the percentage of olive oil in fraudulent blends with VOs with regard to the 71 

labelling compliance of Reg. (EU) 29/2012 (De la Mata, Dominguez-Vidal, Bosque-Sendra, Ruiz-72 

Medina, Cuadros-Rodríguez, & Ayora-Cañada, 2012; Gómez-Coca, Pérez-Camino, Martínez-73 

Rivas, Bendini, Gallina Toschi, & Moreda, 2020; Monfreda, Gobbi, & Grippa, 2012; Santos, Kock, 74 

Santos, Lobo, Carvalho, & Colnago, 2017). 75 
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The chemical methods traditionally used in food analysis are laborious, time-consuming, non-eco-76 

friendly and require sample preparation and skilled operators. In contrast, metabolomic approaches 77 

based on advanced instrumental techniques, such as MS and NMR, coupled to chemometrics 78 

overcome some of these operational drawbacks and provide useful tools for food quality control and 79 

traceability (Lioupi, Nenadis, & Theodoridis, 2020). Most of the NMR approaches developed for 80 

olive oil authentication, detection of olive oil adulteration and to determine the composition of olive 81 

oil blends with VOs, were based on measuring NMR signals that give quantitative information of 82 

certain compounds or are used to calculate some parameters and ratios (i.e. profiling) 83 

(Agiomyrgianaki, Petrakis, & Dais, 2010; García-González, Mannina, D'Imperio, Segre, & 84 

Aparicio, 2004; Jiang, Li, Chen, & Weng, 2018; Mannina, D'Imperio, Capitani, Rezzi, Guillou, 85 

Mavromoustakos, et al., 2009; Popescu, Costinel, Dinca, Marinescu, Stefanescu, & Ionete, 2015; 86 

Vigli, Philippidis, Spyros, & Dais, 2003; Zamora, Alba, & Hidalgo, 2001). Instead, NMR 87 

fingerprinting was only reported in few studies using low-field NMR spectroscopy (Parker, Limer, 88 

Watson, Defernez, Williamson, & Kemsley, 2014; Santos et al., 2017; Wang, Wang, Hou, & Nie, 89 

2020). To the authors’ knowledge, high-field NMR fingerprinting has been used to study mixtures 90 

of olive oil with other VOs for the first time in the present work. This study aimed to develop an 91 

analytical strategy based on 1H-NMR fingerprinting together with multivariate classification and 92 

regression models organised in a decision tree to determine the composition of an oil blend from 93 

both points of view, the botanical nature of the oils and the percentage of each oil in the blend. The 94 

performance of the complete stepwise analytical strategy is evaluated by the prediction results 95 

obtained for an external set of blind oil samples and commercial oils. It is worth noting that this 96 

analytical approach addresses some issues not considered in previous studies: (i) the discrimination 97 

between oil samples containing oil of the ‘virgin olive oil’ category (VOO) and the ‘olive oil’ 98 

category (OO); (ii) the distinction of pure and blended oils; and (iii) the study of a large sample set 99 

with pure oils and blends of the most common VOs used for olive oil adulteration, and a wide range 100 
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of % VO in the blend (including the percentages for the labelling verification in compliance with 101 

Reg. (EU) 29/2012). 102 

2. Material and methods 103 

2.1. Samples 104 

Genuine samples of virgin (VOO) and extra virgin olive (EVOO) oils (n=176), olive oils (OO, 105 

n=3), refined conventional sunflower oil (normal type sunflower oil, NTSO, n=17), refined high 106 

oleic sunflower oil (HOSO, n=16), desterolized and deodorized high oleic sunflower oil (DOSO, 107 

n=1), refined hazelnut oil (HR, n=11), virgin hazelnut oil (HV, n=6), refined soybean oil (S, n=10), 108 

virgin avocado oil (EVAO, n=1), refined avocado oil (RAO, n=1), refined palm olein oil (RPOO, 109 

n=1) and refined corn oil (CO, n=1) were used to prepare binary mixtures at different percentages 110 

(290%) of VOs in VOOs or OOs (1007 blends). Samples were obtained in the framework of the 111 

AUTENFOOD and OLEUM projects. Oils from the sample banks of both projects were produced 112 

during two consecutive harvest years (2016/17 and 2017/18). Besides, eight commercial oil samples 113 

collected in the Swedish market were analysed. According to their labels, the commercial oils were 114 

described as mixtures of VOO and other VO such as rapeseed oil, sunflower oil, or non-identified 115 

vegetable oil. 116 

Blends were prepared and preserved under controlled temperature conditions. All pure and blended 117 

oil samples were bottled with nitrogen headspace or minimal air headspace, kept at -20 ºC and 118 

protected from light. Before analysis, oil samples were taken from the cold storage, left to 119 

equilibrate at room temperature at least for 12 h, and shaken vigorously before sampling the oil 120 

aliquot for analysis. 121 

2.2. Chemicals 122 

Deuterated chloroform for NMR analysis (99.8 atom % D) was provided by Sigma-Aldrich Chemie 123 

(Steinheim, Germany). 124 
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2.3. NMR analysis 125 

Aliquots of 150 µL of each oil sample were dissolved in 750 µL of deuterated chloroform, shaken 126 

in a vortex, and placed in a 5 mm NMR capillary. The 1H-NMR experiments were performed at 127 

300K on a Bruker (Rheinstetten, Germany) Avance 500 (nominal frequency 500.13 MHz) equipped 128 

with a 5 mm broadband inverse probe with Z-gradients. The spectra were recorded using a 6.1 µs 129 

pulse (90°), an acquisition time of 3.5 s (50k data points) and a total recycling time of 7.0 s, a 130 

spectral width of 7100 Hz (14 ppm), 32 scans (+ 4 dummy scans), with no sample rotation. Prior to 131 

Fourier transformation, the free induction decays (FIDs) were zero-filled to 64k and a 0.3 Hz line-132 

broadening factor was applied. The chemical shifts were expressed in δ scale (ppm), referenced to 133 

the residual signal of chloroform (7.26 ppm). The spectra were phase- and baseline-corrected 134 

manually, binned with 0.02 ppm-wide buckets, and normalized to total intensity over the region 135 

4.104.26 ppm (glycerol signal). The region of the NMR spectra studied comprised from 0 ppm to 136 

11 ppm. TopSpin 2.1 (2013) and Amix-Viewer 3.7.7 (2006) from Bruker BioSpin GMBH 137 

(Rheinstetten, Germany) were used to perform the processing of the spectra. The data table 138 

generated with the spectra of all samples, excluding the eight buckets in the reference region 139 

4.104.26 ppm, was then submitted to multivariate data analysis. 140 

2.4. Data analysis 141 

Datasets were made up of the 542 buckets of the 1H-NMR spectra (variables in columns) measured 142 

on the oil samples (samples in rows). A total number of 1239 pure and blended oil samples were 143 

analysed by 1H-NMR. Depending on the aim of the multivariate model to be developed, the dataset 144 

contained the NMR spectral data of the corresponding studied samples. Datasets were analysed by 145 

univariate procedures (ANOVA, Fisher index and Box & Whisker plots); and by multivariate 146 

techniques, unsupervised such as principal component analysis (PCA), and supervised as partial 147 

least squares discriminant analysis (PLS-DA) and partial least squares regression (PLS-R) 148 

(Berrueta, Alonso-Salces, & Héberger, 2007). Data analysis was performed by means of the 149 
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statistical software package Statistica 7.0 (StatSoft Inc., Tulsa, OK, USA, 19842004) and The 150 

Unscrambler v9.7 (Camo Software AS, 19862007). 151 

PCA, PLS-DA and PLS-R were applied to the autoscaled or centered data matrix of 1H-NMR 152 

spectra of the oil samples. The presence of outliers in the dataset was analysed by PCA. In PLS-DA 153 

and PLS-R, the optimal number of PLS-components is estimated by cross-validation by plotting the 154 

root mean square error in the prediction (RMSEP) against the number of PLS-components. The 155 

model with the smallest number of features should be accepted from among equivalent models on 156 

the training set in order to avoid overfitting (according to the principle of parsimony). In PLS-DA, 157 

once the number of PLS-components is optimised, the predictions in the training-test set are 158 

represented in a box and whisker plot in order to define the half of the distance between the 159 

quartiles as the boundary. The regression coefficients (B) of the optimal number of PLS-160 

components denote the importance of the NMR variables on the model: the larger the B-coefficient, 161 

the higher the influence of the variable on the PLS-DA or PLS-R model. A large B-coefficient may 162 

also indicate a variable with small absolute values but large relative differences (Esbensen, Guyot, 163 

Westad, & Houmøller, 2002). PLS-DA and PLS-R models were validated by 3-fold or leave-one 164 

out cross-validation for parameter optimization, and by external validation when an external set of 165 

samples was available. Binary classification models can lead to artefacts if they are not used and 166 

validated properly (Kjeldahl & Bro, 2010). The reliability of the classification models developed 167 

was studied in terms of recognition and prediction abilities in the cross-validation, and prediction 168 

ability in the external validation (Berrueta et al., 2007). The goodness of the regression model fit 169 

was evaluated by means of the prediction error, the correlation coefficient between predicted and 170 

measured values in calibration and validation (R-cal, R-val), the determination coefficient in 171 

calibration and validation (R2-cal, R2-val), and the evaluation of the residuals. The RMSEP is the 172 

practical average prediction error estimated by the validation set (empirical error estimate expressed 173 

in the original measurement units). The result is expressed as the predicted Y-value ± 2 RMSEP. 174 
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The R-RMSEP is the relative prediction error in % (comparable to the analytical accuracy) 175 

(Esbensen et al., 2002). 176 

3. Results and discussion177 

3.1. Mixtures of olive oil with vegetable oils 178 

Oils of the VOO and OO categories and their mixtures with the most common VOs used for the 179 

adulteration of olive oil or making ‘legal’ blends, i.e. NTSO, HOSO, DOSO, HR, HV, S, EVAO, 180 

RAO, RPOO and CO, were studied. The 1H-NMR spectra of the oil samples, both pure and blended 181 

(binary mixtures of VO with VOO or OO) oils, were recorded. The chemical shifts of the 1H-signals 182 

and their assignments to protons of the different functional groups are shown in Table S1 183 

(supplementary material). The 1H-NMR profiles of the oil samples presented characteristic patterns 184 

of triglycerides, diglycerides and some minor constituents of the unsaponifiable fraction, which are 185 

useful for the determination of the botanical origin of oils and the composition of blended oils 186 

(Agiomyrgianaki et al., 2010; Alonso-Salces, Segebarth, Garmón-Lobato, Holland, Moreno-Rojas, 187 

Fernández-Pierna, et al., 2015; García-González et al., 2004; Guillén & Ruiz, 2003; Mannina et al., 188 

2009; Parker et al., 2014; Popescu et al., 2015; Vigli et al., 2003; Wang et al., 2020). 189 

The proposed approach to detect blends of olive oils (VOOs or OOs) with other VO and quantify 190 

the % VO in the blend is based on the use of the 1H-NMR fingerprint of the oil and a set of 191 

multivariate classification and regression models organized in a decision tree (Figures 1 and S1 in 192 

supplementary material). The PLS-DA and PLS-R models achieved and their chemical 193 

interpretation are described in the next sections. The most influential variables on the models were 194 

not completely discriminant unless otherwise specified. 195 

3.2. PLS-DA model to confirm the presence of VOO or OO 196 

The first stage of the decision tree (Figure 1) consists in identifying whether the oil sample contains 197 

VOO or OO using PLS-DA model-1 with recognition and prediction abilities of 97% and 98% for 198 
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the VOO and OO classes respectively (Table 1). The most influential NMR variables on the model 199 

were the 1H-signals of oleic acid (#7b, #9b), linolenic acid (#10c, #13d) and saturated fatty acids 200 

(#9a), exhibiting higher intensities in VOO and their blends than in samples containing OO. In 201 

contrast, the 1H-signals of linoleic acid (#12b) and sn-1,3-diacylglycerides (#17) presented lower 202 

intensities in the VOO class. These observations are consistent with previous studies reporting the 203 

differences in the composition of oleic, linolenic and saturated fatty acids and sn-1,3-204 

diacylglycerides between VOOs and OOs (Guillén et al., 2003; Jiang et al., 2018). 205 

Once the oil sample is classified as containing VOO or OO, further predictions are made using the 206 

binary classification models built separately for each type of olive oil to elucidate whether the olive 207 

oil sample is mixed with a VO, in which proportion (low or high) and with which particular VO 208 

(Figure 1). 209 

3.3. PLS-DA models to discriminate blends of VOO with VO 210 

For blends containing VOO, PLS-DA model-2 classifies the oil sample according to the proportion 211 

of VO in the mixture, i.e. low (020% VO in VOO) and high (2590% VO in VOO), with correct 212 

prediction abilities of 98% and 97% respectively (Table 1). The most important variables on this 213 

model were the 1H-signals of oleic acid (#9b) and squalene (#11), whose signal intensities were 214 

higher in the low class. Indeed, VOO is known to be one of the vegetable oils that presents the 215 

highest contents of oleic acid and squalene (Jiang et al., 2018; Popescu et al., 2015; Vigli et al., 216 

2003). 217 

Pure VOOs are distinguished from blends with 220% VO in VOO, being identified even 92% of 218 

the pure VOOs and 90% of the VO-VOO blends (PLS-DA models 3 and 4 in Table 1). The main 219 

1H-signals involved in the distinction of both classes were due to saturated fatty acids (#7a, #9a), 220 

which exhibited lower intensities in the VO-VOO class. In fact, saturated fatty acids are the second 221 

major class of fatty acids in VOO, being present in higher or similar concentrations than in the VOs 222 

studied, i.e. NTSO, HOSO, EVAO, HV, HR and S (Contiñas, Martínez, Carballo, & Franco, 2008; 223 
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Guillén et al., 2003; Jabeur, Zribi, Makni, Rebai, Abdelhedi, & Bouaziz, 2014; Jiang et al., 2018; 224 

Jović, Smolić, Primožič, & Hrenar, 2016; Monfreda et al., 2012; Ranade & Thiagarajan, 2015; 225 

Yang, Ferro, Cavaco, & Liang, 2013). Concerning the discrimination of blends of 2% VO in VOO 226 

for a certain VO, a satisfactory classification model was only achieved for soybean oil; thus, all 227 

blends with 2% S in VOO were detected, and 97% of the blends with 2% of other VO in VOO were 228 

correctly predicted (PLS-DA model-5 in Table 1). 229 

The 1H-NMR fingerprint of an oil sample classified in the low class (020% VO in VOO) is then 230 

submitted to classification models developed for each VO (PLS-DA models 624) to identify which 231 

particular VO is contained in the oil sample (Tables 2 and S2S3 in supplementary material). The 232 

classification abilities of the PLS-DA models were better when the dataset contained only the data 233 

of blended oils with 520% VO in VOO than when data of pure VOO and/or 2% VO in VOO was 234 

also included. The prediction abilities ranged between 83% and 98% of hits depending on the VO 235 

blended with VOO. Similarly, when an oil sample is classified in the high class (2590% VO in 236 

VOO), its 1H-NMR fingerprint is submitted to PLS-DA models developed for mixtures of 2090% 237 

VO in VOO (PLS-DA models 2528 in Table 3) to identify the VO contained in the blend. In the 238 

present study, only binary mixtures of NTSO, HOSO, EVAO or HV with VOO were available in 239 

the range of 2090% VO. The recognition and prediction abilities of the classification models built 240 

to determine whether the VOO blend contained NTSO, HV or EVAO were 99100% for both 241 

classes, and 100% for the non-HOSO class and 92% for the HOSO class. 242 

Regarding the most influential variables on the models, the 1H-signal of oleic acid (#9b) was 243 

completely discriminant between VOO mixtures with high % NTSO and those with other VOs. The 244 

blends of 2090% NTSO in VOO contained significantly lower amounts of oleic acid than VOO 245 

blends with 2090% HOSO, EVAO or HV. It is well-documented that virgin hazelnut oil, high 246 

oleic sunflower oil and virgin avocado oil present significantly higher contents of oleic acid than 247 

sunflower oil (Contiñas et al., 2008; Guillén et al., 2003; Jabeur et al., 2014; Jović et al., 2016; 248 
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Ranade et al., 2015; Vigli et al., 2003; Yang et al., 2013). Other important variables to discriminate 249 

the presence of NTSO in VOO were the 1H-signals due to linoleic acid (#13c, #12b, #7c) and 250 

unsaturated fatty acids (#24), which presented higher intensities in NTSO-VOO mixtures than in 251 

most of the other VO-VOO blends (Contiñas et al., 2008; Guillén et al., 2003; Jović et al., 2016; 252 

Ranade et al., 2015; Vigli et al., 2003). Concerning the most important 1H-signals on HOSO 253 

models, the signal intensities of linolenic acid (#13d, #12c) and unsaturated fatty acids (#24 at 254 

5.305.32 ppm) were lower in the HOSO-VOO mixtures; whereas those of linoleic acid (#13c, 255 

#12b, #9c), unsaturated fatty acids (#24 at 5.325.34 ppm) and terpenic alcohols or sterols (#2) 256 

were higher in HOSO-VOO mixtures. These observations agreed with the fact that HOSO presents 257 

higher concentrations of linoleic acid than VOO, HV and EVAO and lower than NTSO; and HOSO 258 

contains lower amounts of linolenic acid than NTSO, VOO and EVAO, and similar to HV (Guillén 259 

et al., 2003; Jović et al., 2016; Ranade et al., 2015). Moreover, the mixture of HOSO with VOO 260 

leads to an increase in the sterol content compared to pure olive oil (Al-Ismail, Alsaed, Ahmad, & 261 

Al-Dabbas, 2010). Evaluating the main variables on the EVAO models, it was observed that the 1H 262 

NMR spectra of the mixtures of EVAO in VOO showed higher intensities for the signals of 263 

saturated fatty acids (#10a, #7a, #9a), oleic acid (#7b, #12a, #9b), linoleic acid (#12b, #13c, #10c), 264 

squalene (#11) and β-sitosterol (#4) than the spectra of the other VO-VOO blends. Meanwhile, the 265 

1H-signals of unsaturated fatty acids (#24, #9 at 1.321.36 ppm) and linolenic acid (#13d, #12c, 266 

#9c) presented lower intensities in the EVAO-VOO blends. Indeed, EVAO presents the highest 267 

contents of the saturated fatty acids, mainly palmitic acid, of all the VOs blended with VOO in this 268 

study; similar intermediate amounts of oleic and linoleic acids as HOSO; and low concentrations of 269 

linolenic acid as VOO, HV and HR (Guillén et al., 2003; Jabeur et al., 2014; Jović et al., 2016; 270 

Ranade et al., 2015). To distinguish blends with high % HV in VOO, the 1H-signals of oleic acid 271 

(#7b, #9b, #12a), whose intensities were significantly higher in the HV class, were among the most 272 

important variables on the HV models. HV presents similar or slightly higher contents of oleic acid 273 

than VOO, and considerably higher amounts compared to the other VOs studied (Guillén et al., 274 
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2003). The opposite trend was shown by the 1H-signals of linoleic (#7c) and linolenic (#12c) acids, 275 

which displayed lower intensity values in the HV class than in the non-HV class. Certainly, the 276 

concentrations of linoleic acid in HV are lower than in the other VOs and slightly higher than in 277 

VOO; and linolenic acid is present in similar amounts in HV and HOSO but lower amounts in HV 278 

than in NTSO, VOO and EVAO (Christopoulou, Lazaraki, Komaitis, & Kaselimis, 2004; Jović et 279 

al., 2016; Vigli et al., 2003). For the distinction of mixtures of low % HR in VOO from other VO-280 

VOO mixtures, the 1H-signals of oleic (#12a) and linolenic (#12c, #7d) acids, saturated fatty acids 281 

(#7a) and terpenic alcohols or sterols (#2) exhibited lower intensities in the HR class (Guillén et al., 282 

2003; Vigli et al., 2003). The most discriminant variables in the models to detect low % S in VOO 283 

were the 1H-signals of linolenic acid (#15b, #7d, #12c) and unsaturated fatty acids (#24), which 284 

presented significantly higher intensities in S-VOO blends than in the other VO-VOO blends. 285 

Soybean oil is the oil with the highest contents of linolenic acid among the studied VOs (Contiñas 286 

et al., 2008; Christopoulou et al., 2004; Guillén et al., 2003; Jabeur et al., 2014; Vigli et al., 2003). 287 

Furthermore, the lower signal intensities of oleic (#7b) and linoleic (#13c) acids in the S class also 288 

contributed to the discrimination of both classes, being consistent with the literature reporting that 289 

soybean oil presents significantly lower contents of oleic acid than VOO, and similar contents of 290 

linoleic acid as other VOs, such as sunflower oil (Guillén et al., 2003; Jović et al., 2016; Vigli et al., 291 

2003). 292 

3.4. PLS-DA models to discriminate blends of OO with VO 293 

Satisfactory binary classification models for all the studied VOs (RPOO, CO, HOSO, NTSO, 294 

DOSO, RAO and HR) were obtained using the data of the full % range of VO in the OO mixture, 295 

i.e. 080% VO in OO (PLS-DA models 3036 in Table S4 (supplementary material). Prediction296 

abilities were 95100% for both classes in the models developed to discriminate between OO 297 

blends with and without RPOO, CO or HOSO; 8487% for the OO mixtures with NTSO, DOSO or 298 

RAO, and 9197% for the OO blends that did not contain the corresponding specific VO; and 97% 299 
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for the HR class and 89% for the non-HR class. These classification results were improved for each 300 

VO by further PLS-DA models developed separately for blends with low or high % VO in OO. 301 

Hence, the oil sample containing OO is first classified according to its level of VO, i.e. low (020% 302 

VO in OO) or high (3080% VO in OO), by PLS-DA model-29 with prediction abilities of 96% 303 

and 94% respectively (Table 1). The most influential variables on this model were the 1H-signals of 304 

saturated fatty acids (#7a), β-sitosterol (#4), linoleic acid (#12b, #15a, #13c) and unsaturated fatty 305 

acids (#24, #7 at 1.001.02 ppm, #9 at 1.321.33 ppm), which exhibited lower intensities in the low 306 

class; and those of linolenic (#7d, #15b) and oleic (#12a) acids, which displayed higher intensities 307 

in the low class. The chemical composition of the blends that constituted each class justified these 308 

observations; thus, the low class contained the samples with the highest % of OO, which is the oil 309 

that contains the highest concentrations of oleic acid, together with HR; whereas the high class 310 

included the samples with high % of VO characterised by high linoleic and β-sitosterol contents 311 

(Al-Ismail et al., 2010; Aparicio & Harwood, 2013; Green & Wang, 2020; Guillén et al., 2003; 312 

Jović et al., 2016; Parcerisa, Casals, Boatella, Codony, & Rafecas, 2000; Vigli et al., 2003). 313 

An oil sample containing low % VO in OO is then subjected to various classification models (PLS-314 

DA models 3750) to identify the specific VO contained in the OO blend (Tables 2 and S5 in 315 

supplementary material). The recognition and prediction abilities of these models were higher than 316 

95% of hits for detecting RPOO, CO and HOSO in OO; c.a. 90% for NTSO, DOSO and HR in OO; 317 

and c.a. 8085% for RAO in OO. Taking into account that all CO-OO blends, 95% of the RPOO-318 

OO blends, and at least 95% of the OO blends not containing CO or RPOO were identified with the 319 

corresponding models for low % VO in OO, further classification models were developed using 320 

datasets without the 1H-NMR spectral data of RPOO-OO and CO-OO mixtures. The PLS-DA 321 

models achieved (PLS-DA models 5155) afforded better classification abilities to detect NTSO 322 

and RAO in OO, and similar results to resolve the presence of HOSO, DOSO or HR in OO (Table 323 

S6 in supplementary material). 324 
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For oil samples with high % VO in OO, the classification models developed for blends with 325 

2080% VO in OO (PLS-DA models 5662) presented recognition and prediction abilities of 326 

98100% for both classes in RPOO, CO, DOSO and HR models; ≥91% for both classes in NTSO 327 

and RAO models; and 86% for the HOSO class and 99% for the non-HOSO class (Table 3). Since 328 

all blends were correctly classified by the RPOO and CO models, further PLS-DA models to detect 329 

2080% VO in OO were built using a dataset without the 1H-NMR spectral data of RPOO-OO and 330 

CO-OO blends (PLS-DA models 6367 in Table S7 in supplementary material). These models 331 

provided the same or better classification abilities than the previous ones, except for HR-OO blends. 332 

Indeed, the NTSO and HOSO models allowed the correct classification of all samples of both 333 

classes; and the RAO model identified all samples containing RAO and 92% of the samples in the 334 

non-RAO class. The main 1H-signals responsible for the identification of OO blends containing 335 

RPOO were those of saturated fatty acids (#9a), which presented significantly higher intensities in 336 

the RPOO-OO blends; and those of linoleic acid (#9c, #12b), which showed lower intensities in the 337 

RPOO class. The 1H-signals #9a and #9c were completely discriminants between OO blends 338 

containing ≥20% RPOO and the other VO-OO blends with high % VO. As a result, the 339 

measurement of just one of these two variables would be enough to confirm whether an OO is 340 

mixed with RPOO in percentages ≥20%. Palm oil is the oil that contains the highest amounts of 341 

saturated fatty acids among the VOs studied (Vigli et al., 2003). Palmitic acid is the major saturated 342 

fatty acid in palm oil and is contained in similar amounts as oleic acid. Meanwhile, linoleic acid is a 343 

minor compound in palm oil, present in similar concentrations as in OO, and in lower amounts than 344 

in the rest of VOs (Montoya, Cochard, Flori, Cros, Lopes, Cuellar, et al., 2014). The CO-OO blends 345 

were distinguished from the other VO-OO mixtures due to the 1H-signals of linoleic (#7c) and 346 

linolenic (#15b, #7d) acids, saturated fatty acids (#7a) and β-sitosterol (#4), which presented higher 347 

intensities in the blends containing CO; and to the signal of oleic acid (#9b) with lower intensities in 348 

the CO class. Actually, corn oil presents linoleic acid in amounts similar to sunflower oil and 349 

significantly higher than refined avocado, refined hazelnut, palm and olive oils; linolenic acid and 350 
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β-sitosterol in slightly higher concentrations than the other oils studied; saturated fatty acids in 351 

lower contents than palm oil but similar or slightly higher than the rest of the oils considered in the 352 

model; and the lowest content of oleic acid, together with sunflower oil. (Aparicio et al., 2013; 353 

Guillén et al., 2003; Monfreda et al., 2012; Vigli et al., 2003). The major contributors to the 354 

discrimination of HOSO from other VOs in OO were the 1H-signals of oleic (#9b, #12a) and 355 

linoleic (#12b, #9c) acids and saturated (#9a) and unsaturated (#24, #9 at 1.301.34 ppm) fatty 356 

acids, which exhibited higher intensities in the OO blends with HOSO. Indeed, HOSO contains 357 

higher amounts of oleic acid than sunflower, corn and palm oils; similar to avocado oil; and lower 358 

than hazelnut and olive oils. Linoleic acid is present in larger concentrations in HOSO than in palm, 359 

olive, hazelnut and avocado oils, and smaller than in sunflower and corn oils. The content of 360 

saturated fatty acids (#9a) in HOSO is intermediate-high with respect to other VOs but far from 361 

those of RPOO, which exhibit the largest contents (Green et al., 2020; Guillén et al., 2003; Jović et 362 

al., 2016; Vigli et al., 2003). As in NTSO-VOO models, the most influential variables on the 363 

classification models achieved for the detection of NTSO in OO were the 1H-signals of linoleic acid 364 

(#7c, #15a, #12b) and unsaturated fatty acids (#24, #7 at 1.001.02 ppm, #9 at 1.321.36 ppm), 365 

displaying higher intensities in the OO blends with NTSO; and oleic acid (#12a, #7b, #9b), showing 366 

the opposite trend. For OO blends with 2080% NTSO, once the presence of RPOO and CO in the 367 

OO blend was discarded by the PLS-DA models 56 and 57 respectively (Table 3), not only the 368 

signal of oleic acid (#9b) but also several other signals (#15a, #12b, #9 at 1.341.36 ppm, #24) were 369 

completely discriminant between both classes; therefore any of them can be used as markers to 370 

determine whether an OO blend contains NTSO at concentrations ≥20%. Sunflower oil is 371 

characterised by the largest contents of linoleic and unsaturated fatty acids, and the lowest contents 372 

of oleic acid with regard to the other VOs studied (Guillén et al., 2003; Jabeur et al., 2014; Jović et 373 

al., 2016; Monfreda et al., 2012; Yang et al., 2013). The DOSO models disclosed that the intensities 374 

of the 1H-signals due to oleic acid (#12a, #9b) were significantly higher in DOSO-OO blends, in 375 

contrast with linoleic acid (#12b, #7c, #24) signals exhibiting higher intensities in the non-DOSO 376 
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class. During the desterolization process, it takes place the dehydration of sterols and the 377 

elimination of the acid group of sterol esters by bleaching, producing olefinic degradation products 378 

and di-steryl ethers; meanwhile the profiles of triacylglycerides and fatty acids are practically 379 

unaltered (Grob, Biedermann, Bronz, & Giuffré, 1994). Therefore, it would be expected that DOSO 380 

presents relatively high contents of oleic and linoleic acids as HOSO. However, the deodorization 381 

process may affect the composition of triglycerides, diglycerides, fatty acids and minor components 382 

of the unsaponifiable fraction, depending mainly on the temperature and time of the process 383 

(Aparicio et al., 2013), which could be responsible for the lower content of linoleic acid observed in 384 

DOSO blends in relation to the other VOs, including HOSO. The main 1H-signals on the RAO 385 

models were linoleic (#7c, #12b, #13c, #10c) and oleic (#9b) acids and β-sitosterol (#4), exhibiting 386 

similar or higher intensities in RAO-OO blends; linolenic acid (#13d, #9c) and unsaturated fatty 387 

acids (#9 at 1.321.34 ppm, #24), displaying similar or lower intensities in the RAO class; and 388 

saturated fatty acids (#9 at 1.201.22 ppm) with intermediate intensities. In fact, refined avocado 389 

oil, compared to the other VOs studied, presents intermediate compositions of fatty acids (Guillén et 390 

al., 2003; Jabeur et al., 2014; Jović et al., 2016; Vigli et al., 2003; Yang et al., 2013) and sterol 391 

contents, in particular, β-sitosterol (Al-Ismail et al., 2010; Green et al., 2020; Parcerisa et al., 2000). 392 

The most contributing variables to the identification of HR in OO were the 1H-signals of oleic (#7b, 393 

#12a, #9b) and linoleic (#12b) acids, presenting higher intensities in the HR class; and the signals of 394 

linolenic acid (#7d, #15b, #12c, #13d), unsaturated (#24) and saturated (#10a, #7a) fatty acids and 395 

terpenic alcohols or sterols (#2), showing lower intensities in the HR-OO mixtures. The trend of 396 

oleic and linoleic signals observed in HR-OO is opposite to that in HR-VOO. Refined hazelnut oil 397 

contains the highest amounts of oleic acid among the VOs studied, comparable to those in OO but 398 

lower than VOO; the lowest linolenic contents, similar to those found in HOSO (Green et al., 2020; 399 

Guillén et al., 2003; Jović et al., 2016; Parcerisa et al., 2000; Vigli et al., 2003); and characteristic 400 

profiles of sterols and terpenic alcohols (Al-Ismail et al., 2010; Aparicio et al., 2013; Parcerisa et 401 

al., 2000). 402 
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3.5. PLS-R models to determine the percentage of VO in a blend with VOO or OO 403 

PLS regression models to determine the % VO contained in a binary mixture with VOO or OO 404 

(PLS-R models 127) were successfully built for all VOs studied (Table 4). The PLS-R models 405 

developed for different sub-ranges of % VO in VOO or OO provided more accurate predictions 406 

than those constructed for the full % VO range. The most influential variables on the regression 407 

models coincided with those on the classification ones. Therefore, the regression results were 408 

explained by the characteristic composition in fatty acids, triacylglycerides and squalene of the oils 409 

present in the blend. In VO-VOO models, diacylglycerides, terpenic alcohols and sterols were also 410 

decisive. 411 

All regression models presented excellent precisions; yielding R2 values 0.930.990, except for the 412 

low % range models of VOO mixtures with NTSO, HOSO, HR and S. The PLS-R models for low 413 

% NTSO, HOSO and S in VOO presented R2 values <0.70, indicating that the equation can only be 414 

used for screening purposes, which enables to distinguish between low, medium and high values of 415 

% VO. The PLS-R model for low % HR in VOO showed R2 values <0.50, so the equation only 416 

discriminates between high and low values (Priego Capote, Ruiz Jiménez, & Luque De Castro, 417 

2007), in the same way as PLS-DA model-73 distinguishes 25% HR and 10% HR in VOO (Table 418 

5). 419 

The regression models achieved allow to determine the % VO in a VOO blend with uncertainties 420 

under 5% R-RMSEP for contents of ≥10% NTSO, ≥34% EVAO, ≥39% HOSO and ≥45% HV; 421 

510% R-RMSEP for contents of 1345% HV; 515% R-RMSEP for contents of 810% NTSO, 422 

734% EVAO, 2039% HOSO and 1026% HV; 1520% R-RMSEP for contents of 68% NTSO, 423 

57% EVAO, 1720% HOSO and 5% S; and with uncertainty of 28% R-RMSEP for contents of 424 

10% HR. Considering VO-OO blends, the % VO in OO was quantified with uncertainties under 5% 425 

R-RMSEP for contents of ≥5% RPOO, ≥6% CO, ≥10% HR, ≥16% DOSO, ≥16% HOSO, ≥9% 426 

NTSO and ≥31% RAO; 515% R-RMSEP for contents of 25% RPOO, 26% CO, 310% HR, 427 
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516% DOSO, 716% HOSO, 39% NTSO and 531% RAO; and 1520% R-RMSEP for 428 

contents of 23% HR, 45% DOSO, 57% HOSO, 23% NTSO and 45% RAO. 429 

The classification abilities of the PLS-DA models to identify blends with low % HV, HR, HOSO 430 

and NTSO in VOO and low % RAO in OO were considerably improved when the samples of 2% 431 

VO in VOO and/or pure olive oil (VOO or OO) were removed from the dataset used to develop the 432 

models (Table 2), indicating that these samples were close to the boundary and therefore could be 433 

misclassified. Regarding this fact and the precisions and accuracies of the regression models built, 434 

the experimental detection limits were established in the ranges between 25% VO for blends of 435 

HV, HR, HOSO or NTSO in VOO; between 24% VO for blends of RAO in OO; and under 2% 436 

VO for blends of EVAO or S in VOO and RPOO, CO, HOSO, NTSO, DOSO or HR in OO. The 437 

present results are similar or outperform those reported in the literature using NMR (Parker et al., 438 

2014; Wang et al., 2020) or other analytical techniques (De La Mata-Espinosa et al., 2011; Grob et 439 

al., 1994; Jabeur et al., 2014; Jović et al., 2016; Monfreda et al., 2012). In previous high-field NMR 440 

studies, the adulteration of refined hazelnut oil in olive oil was detected at a proportion of 10% 441 

using 1H-NMR and linear discriminant analysis (Mannina et al., 2009), 8% using 1H and 13C-NMR 442 

and artificial neural networks (García-González et al., 2004), 1% using 1H and 31P-NMR and 443 

canonical discriminant analysis or classification trees (Agiomyrgianaki et al., 2010), and 5% of 444 

hazelnut oil in VOO using 13C-NMR and discriminant data analysis (Zamora et al., 2001). 1H and 445 

31P-NMR together with discriminant analysis allowed the detection of adulterations as low as 5% of 446 

hazelnut, corn, sunflower and soybean oils in VOO (Vigli et al., 2003). 13C-NMR and discriminant 447 

data analysis distinguished palm oil at 5% in OO (Guyader, Thomas, Portaluri, Jamin, Akoka, 448 

Silvestre, et al., 2018). The determination of the contents of oleic, linoleic, linolenic and saturated 449 

fatty acids and squalene by 1H-NMR enabled the detection of 4.5% soybean oil in VOO (Jiang et 450 

al., 2018). Nevertheless, chromatographic techniques afforded the lowest limits of detection for 451 

sunflower, soybean, corn and palm oils in VOO, detecting even 0.1% adulteration (Jabeur, Zribi, & 452 

Bouaziz, 2016). 453 
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3.6. PLS-DA models to discriminate between ‘legal’ and ‘illegal’ blends of VOO or OO 454 

with VO 455 

The potential of the present multivariate approach to implement Reg. (EU) 29/2012 and its 456 

amendments is demonstrated with a case study. The most common vegetable oil used to be blended 457 

with olive oil is sunflower oil. Therefore NTSO and HOSO were considered as model VOs in 458 

‘legal’ blends with VOO or OO, as done in previous studies (Gómez-Coca et al., 2020; Monfreda et 459 

al., 2012). The olive oil blends with the other VOs studied were regarded as ‘illegal’ blends. Binary 460 

classification models were developed to first distinguish between ‘legal’ and ‘illegal’ blends, and 461 

then differentiate which of the two types of sunflower oils, i.e. NTSO or HOSO, is in the ‘legal’ 462 

blend with VOO or OO (Figure S1 in supplementary material). The percentage of NTSO or HOSO 463 

in the mixture is determined by the regression models that are reported in the previous section 464 

(Table 4). 465 

The PLS-DA model discriminating between ‘legal’ and ‘illegal’ blends provided prediction abilities 466 

of 77% for both classes concerning blends with VOO (PLS-DA model-68), and 86% and 98% 467 

respectively for blends with OO (PLS-DA model-70 in Table 5). The most discriminant variables 468 

on these models are shown in Table S8 (supplementary material). The trends observed for the 1H-469 

signals involved were consistent with the known differences in the chemical composition of NTSO 470 

and HOSO with respect to the VOs in the ‘illegal’ class and both categories of olive oils, already 471 

mentioned above. 472 

In addition, classification models were constructed to distinguish ‘legal’ blends containing NTSO 473 

from those with HOSO, affording prediction abilities of 8385% for blends with VOO (PLS-DA 474 

model-69), and 97% for blends with OO (PLS-DA model-71 in Table 5). HOSO contains higher 475 

amounts of oleic acid and lower concentrations of linoleic and linolenic acids (polyunsaturated fatty 476 

acids) than NTSO (Jović et al., 2016), which is reflected on the most influential 1H-signals on these 477 

models (Table S8 in supplementary material). 478 
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3.7. PLS-DA models to discriminate between blends of VOO or OO with different 479 

compositions 480 

Further binary classification models can be built using datasets containing only the information 481 

related to specific VOs or % VO in the blends. These complementary models are useful whenever 482 

an oil sample is predicted to contain a certain VO by more than one of the classification models 483 

described above. Likewise, in the case that the determination of the % VO is not enough accurate 484 

by the corresponding regression model for low percentages, it is interesting to be able to 485 

discriminate between mixtures with different % VO. As a proof of concept, binary classification 486 

models were developed to distinguish blends of different % S or HR in VOO (PLS-DA models 72 487 

and 73); and OO mixtures containing DOSO or HR (PLS-DA model-74), RAO or HR (PLS-DA 488 

model-75), RAO or DOSO (PLS-DA model-76) and DOSO or HOSO (PLS-DA model-77), with 489 

satisfactory classification abilities (Table 5). The most influential 1H-signals on these models are 490 

gathered in Table S8 (supplementary material). Depending on the class and model considered, 491 

different trends were observed in the signal intensities, which are in accordance with the relative 492 

chemical composition of each kind of oil in the blend previously reported. The major fatty acids in 493 

S and VOO are linoleic acid and oleic acid respectively  (Vigli et al., 2003). VOO contains higher 494 

amounts of squalene and linolenic acid than HR, and the opposite occurs for linoleic acid (Guillén 495 

et al., 2003; Vigli et al., 2003). HR presents higher contents of oleic acid, similar concentrations of 496 

linoleic acid and lower amounts of saturated fatty acids than RAO (Green et al., 2020; Parcerisa et 497 

al., 2000). In respect of the main variables on the models obtained for the discrimination of DOSO-498 

OO blends from other VO-OO mixtures, DOSO-OO blends contained higher concentrations of 499 

oleic acid than OO blends of HR, RAO and HOSO, which are the VOs that present the highest 500 

contents of oleic acid (Green et al., 2020; Guillén et al., 2003; Jović et al., 2016; Parcerisa et al., 501 

2000); and lower amounts of linoleic acid than OO blends of HR, RAO and HOSO. Taking into 502 

account that DOSO is obtained from the desterolization and deodorization of HOSO, these results 503 

evidenced that during the deodorization and/or desterolization processes the fatty acid profile of the 504 
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oil was altered, resulting in lower linoleic and higher oleic contents. In this sense, it has been 505 

already reported that the drastic conditions used during raffination processes lead to olefinic 506 

degradation of sterols, the isomerization of squalene and linoleic and linolenic acids, among other 507 

changes in the chemical composition of the oil (Aparicio et al., 2013; Grob et al., 1994). 508 

3.8. Prediction of blends of olive oil with other vegetable oils 509 

The composition of thirty-six blind oil samples provided within the OLEUM Project and eight 510 

commercial oils was predicted by the classification and regression models developed for blends of 511 

olive oil with other vegetable oils following the decision trees shown in Figures 1 and S1 512 

(supplementary material). For each blind sample, Table S9 (supplementary material) gathers i) the 513 

PLS-DA and PLS-R models applied; ii) the PLS-DA predictions related to the category of the olive 514 

oil (VOO or OO), the VO contained, and the low/high level of VO in the blend (Tables 13, S2S7 515 

in supplementary material); iii) the % VO in the blend determined by the corresponding PLS-R 516 

model (Table 4); and iv) the predictions of the complementary PLS-DA models (Table 5). Most of 517 

the blind samples were predicted satisfactorily according to the description provided (Table S9 in 518 

supplementary material); thus, the category of olive oil, i.e. VOO or OO, the particular VO and the 519 

% VO in the oil sample were accurately determined. All mixtures of VOO or OO with 4060% 520 

NTSO or HOSO (112), all the blends (containing 530% VO) of RPOO-OO (2932) and HV-521 

VOO (1720), and the blends of EVAO-VOO (1416) and HR-OO (2628) with ≥10% VO were 522 

correctly identified and the % VO properly figured out. Only blind samples 16, 17 and 19 were 523 

predicted to present slightly higher % VO in VOO, and sample 26 scarcely lower % HR in OO, than 524 

those percentages given in the description. The DOSO-OO blends (3336) were satisfactorily 525 

determined by the corresponding classification and regression models; the % DOSO in OO in 526 

sample 36 was barely lower than predicted. The blend of 10% DOSO in OO (34) was confused with 527 

mixtures of 211% of HOSO in OO. For the blend of 5% EVAO in VOO (13), the contained VO 528 

was not recognised by any of the classification models, but the calculated % VO was within the 529 
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calibration range of the regression model developed for EVAO-VOO blends; and this model 530 

predicted correctly the % EVAO in the mixture, even with better precisions than the other models 531 

built for HOSO-VOO and HR-VOO blends. The VO in the blend of 5% HR in OO (25) was not 532 

identified by any of the HR-OO classification models. Indeed, the detection of the adulteration of 533 

OO with HR is still one of the main challenges in fraud detection due to the close composition of 534 

both refined oils (Agiomyrgianaki et al., 2010; García-González et al., 2004; Mannina et al., 2009). 535 

Even blends with ≤10% HR in OO can be confused with RAO-OO blends. The composition of 536 

blind samples 2124 were determined by the classification and regression models built for both 537 

RAO-OO and DOSO-OO blends; however, the PLS-DA model-76 (Table 5), which distinguishes 538 

these two OO mixtures, predicted satisfactorily that these blind samples contained RAO, except for 539 

the mixture of 10% RAO in OO (22). 540 

Regarding the commercial oils analysed, samples 37, 38 and 44 were declared to be mixtures of 541 

vegetable oils or NTSO with EVOO or VOO. Samples 37 and 38 were confirmed to contain VOO, 542 

whereas sample 44 was classified as an OO blend. Furthermore, the three samples were predicted to 543 

contain NTSO, in accordance with their label specifications. All the other commercial oil samples 544 

(3943) were labelled as mixtures of VOO or EVOO with rapeseed oil; however, all of them were 545 

classified as blends of OO. These results are not conclusive since no blends of rapeseed oil with 546 

VOO or OO were available to be included in the modelling step of the present study. 547 

4. Conclusion 548 

A stepwise strategy based on 1H-NMR fingerprinting of an oil sample in combination with 549 

chemometrics is proposed to determine the content of mixtures of oils of the ‘virgin olive oil’ or 550 

‘olive oil’ categories and vegetable oils, providing a chemical tool to (i) confirm the presence of 551 

VOO or OO in an oil sample; (ii) discriminate between pure olive oils and their blends with VOs to 552 

a certain extent, given by the detection limit disclosed for each VO; (iii) identify the VO in the 553 

blend with VOO or OO; (iv) differentiate between blends made with different VOs in VOO or OO; 554 
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(v) distinguish blends made with the same VO in different proportions; and (vi) determine the % 555 

VO blended with VOO or OO. 556 

1H-NMR spectral data of olive oils and their mixtures with the VOs most commonly used to make 557 

blends, i.e. sunflower oil, high oleic sunflower oil, desterolized high oleic sunflower oil, virgin and 558 

refined avocado oil, virgin and refined hazelnut oil, refined palm olein oil, corn oil and soybean oil, 559 

was used to optimize and validate classification and regression models built by PLS-DA and PLS-R 560 

respectively. The classification models achieved were satisfactory, robust and stable. Excellent 561 

precisions and acceptable accuracies were afforded by the regression models developed for the 562 

determination of the % VO in VOO or OO. The reliability of the classification and regression 563 

models was supported by the chemical interpretation of the most influential variables on the 564 

validated models. The % VO in the blend is determined with uncertainties under the 20% of R-565 

RMSEP for contents as low as 5% EVAO or S, 6% NTSO, 10% HV and 17% HOSO in VOO; and 566 

2% RPOO, CO, NTSO or HR, 4% DOSO or RAO and 5% HOSO in OO. The detection limits are 567 

under 2% EVAO or S and between 25% NTSO, HOSO, HV or HR in VOO; and under 2% RPOO, 568 

CO, HOSO, NTSO, DOSO or HR and 24% RAO in OO. The performance and effectiveness of the 569 

proposed strategy were validated by a set of blind samples, which confirmed its feasibility to 570 

support Reg. (EU) 29/2012. Further studies should be carried out with larger balanced sample sets 571 

covering the variability of olive oils of both categories (VOO and OO) and the vegetable oils of 572 

interest. The different possible sources of variability, such as the varieties of each botanical oil 573 

species, the agronomical and climatic conditions, the geographical origins and harvests, should be 574 

considered. The implementation of this approach requires a databank of 1H-NMR fingerprints of 575 

oils. The databank has to include pure oils comprising olive oils of the different categories, 576 

vegetable oils used to make legal blends and adulterant oils, and their mixtures; because it has to be 577 

representative of oil variability in order to guarantee robust models for both authentication and 578 

fraud detection. It is worth noting that this requirement is feasible in practice since the creation of 579 

the OLEUM Databank and the OLEUM Network are among the objectives of the OLEUM Project 580 
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that are being accomplished. The OLEUM Databank is an online integrated quality assurance 581 

database of olive oil analytical methods and chemical data, which is currently being developed. The 582 

OLEUM Network is a worldwide community of proficient analytical laboratories involved in olive 583 

oil analysis, and it is expected to expand and may also contribute to the feeding and updating of the 584 

databank over time. 585 
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Figure captions 728 

Figure 1. Decision tree constituted of PLS-DA classification and PLS-R regression models to 729 

determine the composition of binary mixtures of oils of the ‘virgin olive oil’ or ‘olive oil’ categories 730 

and other vegetable oils. Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; 731 

NTSO, refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic 732 

sunflower oil; DOSO, desterolized and deodorized high oleic sunflower oil; HR, refined hazelnut 733 

oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, virgin avocado oil; RAO, refined 734 

avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 735 

736 

Supplementary material 737 

Figure S1. Decision tree constituted of PLS-DA classification and PLS-R regression models for 738 

a case-study: Discrimination between ‘legal’ (containing NTSO or HOSO) and ‘illegal’ (not 739 

containing NTSO or HOSO) blends, and determination of % NTSO or HOSO in binary mixtures 740 

with oils of the ‘virgin olive oil’ or ‘olive oil’ categories. Abbreviations: VOO, virgin olive oil; OO, 741 

olive oil; VO, vegetable oil; NTSO, refined conventional sunflower oil (normal type sunflower oil); 742 

HOSO, refined high oleic sunflower oil. 743 



1 

Stepwise strategy based on 1H-NMR fingerprinting in combination with 1 

chemometrics to determine the content of vegetable oils in olive oil mixtures 2 

 3 

Rosa María Alonso-Salces1,*, Luis Ángel Berrueta2, Beatriz Quintanilla-Casas3, Stefania Vichi3, 4 

Alba Tres3, María Isabel Collado4, Carlos Asensio-Regalado2, Gabriela Elena Viacava5, Aimará 5 

Ayelen Poliero6, Enrico Valli7, Alessandra Bendini7, Tullia Gallina Toschi7, José Manuel Martínez-6 

Rivas8, Wenceslao Moreda9, Blanca Gallo2 7 

 8 

1 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de 9 

Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata 10 

(UNMdP), Funes 3350, 7600, Mar del Plata, Argentina. 11 

2 Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País 12 

Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain. 13 

3 Food Science and Nutrition Department, XaRTA (Catalonian Reference Network on Food 14 

Technology), University of Barcelona (UB), Food and Nutrition Torribera Campus, Av. Prat de la 15 

Riba, 171. 08028, Sta. Coloma de Gramanet, Spain. 16 

4 SGIKER, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena 17 

s/n, 48940, Leioa, Spain. 18 

5 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Investigación 19 

en Ingeniería en Alimentos (GIIA), Departamento de Ingeniería Química y en Alimentos, Facultad 20 

de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 4302, 7600, Mar del 21 

Plata, Argentina. 22 

6 Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de 23 

Mar del Plata (UNMdP), Funes 3350, 7600, Mar del Plata, Argentina. 24 

7 Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna 25 

(UNIBO), Piazza Goidanich, 60, I-47521, Cesena (FC), Bologna, Italy. 26 

REVISED Manuscript (text with changes Marked) Click here to view linked References



2 

8 Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa-CSIC, 27 

Ctra. Utrera km 1, Building 46, E-41013 Sevilla, Spain. 28 

9 Department of Characterization and Quality of Lipids, Instituto de la Grasa-CSIC, Ctra. Utrera km 29 

1, Building 46, E-41013 Sevilla, Spain. 30 

 31 

* Corresponding author. 32 

E-mail address: rosamaria.alonsosalces@gmail.com (R.M. Alonso-Salces). 33 

  34 



3 

Abstract 35 

1H-NMR fingerprinting of edible oils and a set of multivariate classification and regression models 36 

organised in a decision tree is proposed as a stepwise strategy to assure the authenticity and 37 

traceability of olive oils and their declared blends with other vegetable oils (VOs). Oils of the 38 

‘virgin olive oil’ and ‘olive oil’ categories and their mixtures with the most common VOs, i.e. 39 

sunflower, high oleic sunflower, hazelnut, avocado, soybean, corn, refined palm olein and 40 

desterolized high oleic sunflower oils, were studied. Partial least squares (PLS) discriminant 41 

analysis provided stable and robust binary classification models to identify the olive oil type and the 42 

VO in the blend. PLS regression afforded models with excellent precisions and acceptable 43 

accuracies to determine the percentage of VO in the mixture. The satisfactory performance of this 44 

approach, tested with blind samples, confirm its potential to support regulations and control bodies. 45 

 46 

Keywords: olive oil, nuclear magnetic resonance, multivariate data analysis, decision tree, 47 

adulteration, authentication 48 
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1. Introduction 50 

The high price of olive oil, the distinctive sensory profile, and its reputation as a healthy source of 51 

dietary fats make olive oil a target for fraud. The most common types of olive oil fraud are illegal 52 

blending with other vegetable oils (VOs) or low-quality olive oils, deliberate mislabelling of less 53 

expensive classes of olive oils, other vegetable oils or their blends with olive oils, and mislabelling 54 

of the geographical origin or Protected Designation of Origin declaration. Indeed, the European 55 

Parliament pointed out that olive oil adulteration has become one of the biggest financial fraud in 56 

the agricultural sector, and evidenced the need to update and harmonize analytical methods for 57 

quality and authenticity control of olive oil (EC, 2020; European Parliament, 2014). In this context, 58 

the so-called OLEUM Project was supported by the European Commission with the overall 59 

objective of improving existing analytical methods and developing new strategies of analysis for 60 

assuring the quality and authenticity of olive oil (OLEUM Project, 2016). 61 

The EU Regulation 29/2012 standardises the labelling of all olive oil categories and their mixtures 62 

with other VOs, allowing to highlight the presence of olive oil on the label outside the ingredient 63 

list, only if it accounts for at least 50% of the blend (EC, 2012). However, this regulation and its 64 

amendments do not refer to any analytical parameter or method to control the percentage of olive 65 

oil in the admixture or the botanical origin of oil. The need of analytical methods to confirm the 66 

presence of olive oil in the blend, to distinguish pure and adulterated olive oils, to identify the 67 

adulterant oils in the mixture, as well as to determine the percentage of olive oil and the adulterants 68 

in the blend, is evidenced and is an issue of major concern in order to implement the established 69 

regulations (Conte, Bendini, Valli, Lucci, Moret, Maquet, et al., 2020). In literature, few works deal 70 

with the verification of the percentage of olive oil in fraudulent blends with VOs with regard to the 71 

labelling compliance of Reg. (EU) 29/2012 (De la Mata, Dominguez-Vidal, Bosque-Sendra, Ruiz-72 

Medina, Cuadros-Rodríguez, & Ayora-Cañada, 2012; Gómez-Coca, Pérez-Camino, Martínez-73 

Rivas, Bendini, Gallina Toschi, & Moreda, 2020; Monfreda, Gobbi, & Grippa, 2012; Santos, Kock, 74 

Santos, Lobo, Carvalho, & Colnago, 2017). 75 
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The chemical methods traditionally used in food analysis are laborious, time-consuming, non-eco-76 

friendly and require sample preparation and skilled operators. In contrast, metabolomic approaches 77 

based on advanced instrumental techniques, such as MS and NMR, coupled to chemometrics 78 

overcome some of these operational drawbacks and provide useful tools for food quality control and 79 

traceability (Lioupi, Nenadis, & Theodoridis, 2020). Most of the NMR approaches developed for 80 

olive oil authentication, detection of olive oil adulteration and to determine the composition of olive 81 

oil blends with VOs, were based on measuring NMR signals that give quantitative information of 82 

certain compounds or are used to calculate some parameters and ratios (i.e. profiling) 83 

(Agiomyrgianaki, Petrakis, & Dais, 2010; García-González, Mannina, D'Imperio, Segre, & 84 

Aparicio, 2004; Jiang, Li, Chen, & Weng, 2018; Mannina, D'Imperio, Capitani, Rezzi, Guillou, 85 

Mavromoustakos, et al., 2009; Popescu, Costinel, Dinca, Marinescu, Stefanescu, & Ionete, 2015; 86 

Vigli, Philippidis, Spyros, & Dais, 2003; Zamora, Alba, & Hidalgo, 2001). Instead, NMR 87 

fingerprinting was only reported in few studies using low-field NMR spectroscopy (Parker, Limer, 88 

Watson, Defernez, Williamson, & Kemsley, 2014; Santos et al., 2017; Wang, Wang, Hou, & Nie, 89 

2020). To the authors’ knowledge, high-field NMR fingerprinting has been used to study mixtures 90 

of olive oil with other VOs for the first time in the present work. This study aimed to develop an 91 

analytical strategy based on 1H-NMR fingerprinting together with multivariate classification and 92 

regression models organised in a decision tree to determine the composition of an oil blend from 93 

both points of view, the botanical nature of the oils and the percentage of each oil in the blend. The 94 

performance of the complete stepwise analytical strategy is evaluated by the prediction results 95 

obtained for an external set of blind oil samples and commercial oils. It is worth noting that this 96 

analytical approach addresses some issues not considered in previous studies: (i) the discrimination 97 

between oil samples containing oil of the ‘virgin olive oil’ category (VOO) and the ‘olive oil’ 98 

category (OO); (ii) the distinction of pure and blended oils; and (iii) the study of a large sample set 99 

with pure oils and blends of the most common VOs used for olive oil adulteration, and a wide range 100 
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of % VO in the blend (including the percentages for the labelling verification in compliance with 101 

Reg. (EU) 29/2012). 102 

2. Material and methods 103 

2.1. Samples 104 

Genuine samples of virgin (VOO) and extra virgin olive (EVOO) oils (n=176), olive oils (OO, 105 

n=3), refined conventional sunflower oil (normal type sunflower oil, NTSO, n=17), refined high 106 

oleic sunflower oil (HOSO, n=16), desterolized and deodorized high oleic sunflower oil (DOSO, 107 

n=1), refined hazelnut oil (HR, n=11), virgin hazelnut oil (HV, n=6), refined soybean oil (S, n=10), 108 

virgin avocado oil (EVAO, n=1), refined avocado oil (RAO, n=1), refined palm olein oil (RPOO, 109 

n=1) and refined corn oil (CO, n=1) were used to prepare binary mixtures at different percentages 110 

(290%) of VOs in VOOs or OOs (1007 blends). Samples were obtained in the framework of the 111 

AUTENFOOD and OLEUM projects. Oils from the sample banks of both projects were produced 112 

during two consecutive harvest years (2016/17 and 2017/18). Besides, eight commercial oil samples 113 

collected in the Swedish market were analysed. According to their labels, the commercial oils were 114 

described as mixtures of VOO and other VO such as rapeseed oil, sunflower oil, or non-identified 115 

vegetable oil. 116 

Blends were prepared and preserved under controlled temperature conditions. All pure and blended 117 

oil samples were bottled with nitrogen headspace or minimal air headspace, kept at -20 ºC and 118 

protected from light. Before analysis, oil samples were taken from the cold storage, left to 119 

equilibrate at room temperature at least for 12 h, and shaken vigorously before sampling the oil 120 

aliquot for analysis. 121 

2.2. Chemicals 122 

Deuterated chloroform for NMR analysis (99.8 atom % D) was provided by Sigma-Aldrich Chemie 123 

(Steinheim, Germany). 124 
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2.3. NMR analysis 125 

Aliquots of 150 µL of each oil sample were dissolved in 750 µL of deuterated chloroform, shaken 126 

in a vortex, and placed in a 5 mm NMR capillary. The 1H-NMR experiments were performed at 127 

300K on a Bruker (Rheinstetten, Germany) Avance 500 (nominal frequency 500.13 MHz) equipped 128 

with a 5 mm broadband inverse probe with Z-gradients. The spectra were recorded using a 6.1 µs 129 

pulse (90°), an acquisition time of 3.5 s (50k data points) and a total recycling time of 7.0 s, a 130 

spectral width of 7100 Hz (14 ppm), 32 scans (+ 4 dummy scans), with no sample rotation. Prior to 131 

Fourier transformation, the free induction decays (FIDs) were zero-filled to 64k and a 0.3 Hz line-132 

broadening factor was applied. The chemical shifts were expressed in δ scale (ppm), referenced to 133 

the residual signal of chloroform (7.26 ppm). The spectra were phase- and baseline-corrected 134 

manually, binned with 0.02 ppm-wide buckets, and normalized to total intensity over the region 135 

4.104.26 ppm (glycerol signal). The region of the NMR spectra studied comprised from 0 ppm to 136 

11 ppm. TopSpin 2.1 (2013) and Amix-Viewer 3.7.7 (2006) from Bruker BioSpin GMBH 137 

(Rheinstetten, Germany) were used to perform the processing of the spectra. The data table 138 

generated with the spectra of all samples, excluding the eight buckets in the reference region 139 

4.104.26 ppm, was then submitted to multivariate data analysis. 140 

2.4. Data analysis 141 

Datasets were made up of the 542 buckets of the 1H-NMR spectra (variables in columns) measured 142 

on the oil samples (samples in rows). A total number of 1239 pure and blended oil samples were 143 

analysed by 1H-NMR. Depending on the aim of the multivariate model to be developed, the dataset 144 

contained the NMR spectral data of the corresponding studied samples. Datasets were analysed by 145 

univariate procedures (ANOVA, Fisher index and Box & Whisker plots); and by multivariate 146 

techniques, unsupervised such as principal component analysis (PCA), and supervised as partial 147 

least squares discriminant analysis (PLS-DA) and partial least squares regression (PLS-R) 148 

(Berrueta, Alonso-Salces, & Héberger, 2007). Data analysis was performed by means of the 149 
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statistical software package Statistica 7.0 (StatSoft Inc., Tulsa, OK, USA, 19842004) and The 150 

Unscrambler v9.7 (Camo Software AS, 19862007). 151 

PCA, PLS-DA and PLS-R were applied to the autoscaled or centered data matrix of 1H-NMR 152 

spectra of the oil samples. The presence of outliers in the dataset was analysed by PCA. In PLS-DA 153 

and PLS-R, the optimal number of PLS-components is estimated by cross-validation by plotting the 154 

root mean square error in the prediction (RMSEP) against the number of PLS-components. The 155 

model with the smallest number of features should be accepted from among equivalent models on 156 

the training set in order to avoid overfitting (according to the principle of parsimony). In PLS-DA, 157 

once the number of PLS-components is optimised, the predictions in the training-test set are 158 

represented in a box and whisker plot in order to define the half of the distance between the 159 

quartiles as the boundary. The regression coefficients (B) of the optimal number of PLS-160 

components denote the importance of the NMR variables on the model: the larger the B-coefficient, 161 

the higher the influence of the variable on the PLS-DA or PLS-R model. A large B-coefficient may 162 

also indicate a variable with small absolute values but large relative differences (Esbensen, Guyot, 163 

Westad, & Houmøller, 2002). PLS-DA and PLS-R models were validated by 3-fold or leave-one 164 

out cross-validation for parameter optimization, and by external validation when an external set of 165 

samples was available. Binary classification models can lead to artefacts if they are not used and 166 

validated properly (Kjeldahl & Bro, 2010). The reliability of the classification models developed 167 

was studied in terms of recognition and prediction abilities in the cross-validation, and prediction 168 

ability in the external validation (Berrueta et al., 2007). The goodness of the regression model fit 169 

was evaluated by means of the prediction error, the correlation coefficient between predicted and 170 

measured values in calibration and validation (R-cal, R-val), the determination coefficient in 171 

calibration and validation (R2-cal, R2-val), and the evaluation of the residuals. The RMSEP is the 172 

practical average prediction error estimated by the validation set (empirical error estimate expressed 173 

in the original measurement units). The result is expressed as the predicted Y-value ± 2 RMSEP. 174 
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The R-RMSEP is the relative prediction error in % (comparable to the analytical accuracy) 175 

(Esbensen et al., 2002). 176 

3. Results and discussion177 

3.1. Mixtures of olive oil with vegetable oils 178 

Oils of the VOO and OO categories and their mixtures with the most common VOs used for the 179 

adulteration of olive oil or making ‘legal’ blends, i.e. NTSO, HOSO, DOSO, HR, HV, S, EVAO, 180 

RAO, RPOO and CO, were studied. The 1H-NMR spectra of the oil samples, both pure and blended 181 

(binary mixtures of VO with VOO or OO) oils, were recorded. The chemical shifts of the 1H-signals 182 

and their assignments to protons of the different functional groups are shown in Table S1 183 

(supplementary material). The 1H-NMR profiles of the oil samples presented characteristic patterns 184 

of triglycerides, diglycerides and some minor constituents of the unsaponifiable fraction, which are 185 

useful for the determination of the botanical origin of oils and the composition of blended oils 186 

(Agiomyrgianaki et al., 2010; Alonso-Salces, Segebarth, Garmón-Lobato, Holland, Moreno-Rojas, 187 

Fernández-Pierna, et al., 2015; García-González et al., 2004; Guillén & Ruiz, 2003; Mannina et al., 188 

2009; Parker et al., 2014; Popescu et al., 2015; Vigli et al., 2003; Wang et al., 2020). 189 

The proposed approach to detect blends of olive oils (VOOs or OOs) with other VO and quantify 190 

the % VO in the blend is based on the use of the 1H-NMR fingerprint of the oil and a set of 191 

multivariate classification and regression models organized in a decision tree (Figures 1 and S1 in 192 

supplementary material). The PLS-DA and PLS-R models achieved and their chemical 193 

interpretation are described in the next sections. The most influential variables on the models were 194 

not completely discriminant unless otherwise specified. 195 

3.2. PLS-DA model to confirm the presence of VOO or OO 196 

The first stage of the decision tree (Figure 1) consists in identifying whether the oil sample contains 197 

VOO or OO using PLS-DA model-1 with recognition and prediction abilities of 97% and 98% for 198 
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the VOO and OO classes respectively (Table 1). The most influential NMR variables on the model 199 

were the 1H-signals of oleic acid (#7b, #9b), linolenic acid (#10c, #13d) and saturated fatty acids 200 

(#9a), exhibiting higher intensities in VOO and their blends than in samples containing OO. In 201 

contrast, the 1H-signals of linoleic acid (#12b) and sn-1,3-diacylglycerides (#17) presented lower 202 

intensities in the VOO class. These observations are consistent with previous studies reporting the 203 

differences in the composition of oleic, linolenic and saturated fatty acids and sn-1,3-204 

diacylglycerides between VOOs and OOs (Guillén et al., 2003; Jiang et al., 2018). 205 

Once the oil sample is classified as containing VOO or OO, further predictions are made using the 206 

binary classification models built separately for each type of olive oil to elucidate whether the olive 207 

oil sample is mixed with a VO, in which proportion (low or high) and with which particular VO 208 

(Figure 1). 209 

3.3. PLS-DA models to discriminate blends of VOO with VO 210 

For blends containing VOO, PLS-DA model-2 classifies the oil sample according to the proportion 211 

of VO in the mixture, i.e. low (020% VO in VOO) and high (2590% VO in VOO), with correct 212 

prediction abilities of 98% and 97% respectively (Table 1). The most important variables on this 213 

model were the 1H-signals of oleic acid (#9b) and squalene (#11), whose signal intensities were 214 

higher in the low class. Indeed, VOO is known to be one of the vegetable oils that presents the 215 

highest contents of oleic acid and squalene (Jiang et al., 2018; Popescu et al., 2015; Vigli et al., 216 

2003). 217 

Pure VOOs are distinguished from blends with 220% VO in VOO, being identified even 92% of 218 

the pure VOOs and 90% of the VO-VOO blends (PLS-DA models 3 and 4 in Table 1). The main 219 

1H-signals involved in the distinction of both classes were due to saturated fatty acids (#7a, #9a), 220 

which exhibited lower intensities in the VO-VOO class. In fact, saturated fatty acids are the second 221 

major class of fatty acids in VOO, being present in higher or similar concentrations than in the VOs 222 

studied, i.e. NTSO, HOSO, EVAO, HV, HR and S (Contiñas, Martínez, Carballo, & Franco, 2008; 223 
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Guillén et al., 2003; Jabeur, Zribi, Makni, Rebai, Abdelhedi, & Bouaziz, 2014; Jiang et al., 2018; 224 

Jović, Smolić, Primožič, & Hrenar, 2016; Monfreda et al., 2012; Ranade & Thiagarajan, 2015; 225 

Yang, Ferro, Cavaco, & Liang, 2013). Concerning the discrimination of blends of 2% VO in VOO 226 

for a certain VO, a satisfactory classification model was only achieved for soybean oil; thus, all 227 

blends with 2% S in VOO were detected, and 97% of the blends with 2% of other VO in VOO were 228 

correctly predicted (PLS-DA model-5 in Table 1). 229 

The 1H-NMR fingerprint of an oil sample classified in the low class (020% VO in VOO) is then 230 

submitted to classification models developed for each VO (PLS-DA models 624) to identify which 231 

particular VO is contained in the oil sample (Tables 2 and S2S3 in supplementary material). The 232 

classification abilities of the PLS-DA models were better when the dataset contained only the data 233 

of blended oils with 520% VO in VOO than when data of pure VOO and/or 2% VO in VOO was 234 

also included. The prediction abilities ranged between 83% and 98% of hits depending on the VO 235 

blended with VOO. Similarly, when an oil sample is classified in the high class (2590% VO in 236 

VOO), its 1H-NMR fingerprint is submitted to PLS-DA models developed for mixtures of 2090% 237 

VO in VOO (PLS-DA models 2528 in Table 3) to identify the VO contained in the blend. In the 238 

present study, only binary mixtures of NTSO, HOSO, EVAO or HV with VOO were available in 239 

the range of 2090% VO. The recognition and prediction abilities of the classification models built 240 

to determine whether the VOO blend contained NTSO, HV or EVAO were 99100% for both 241 

classes, and 100% for the non-HOSO class and 92% for the HOSO class. 242 

Regarding the most influential variables on the models, the 1H-signal of oleic acid (#9b) was 243 

completely discriminant between VOO mixtures with high % NTSO and those with other VOs. The 244 

blends of 2090% NTSO in VOO contained significantly lower amounts of oleic acid than VOO 245 

blends with 2090% HOSO, EVAO or HV. It is well-documented that virgin hazelnut oil, high 246 

oleic sunflower oil and virgin avocado oil present significantly higher contents of oleic acid than 247 

sunflower oil (Contiñas et al., 2008; Guillén et al., 2003; Jabeur et al., 2014; Jović et al., 2016; 248 
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Ranade et al., 2015; Vigli et al., 2003; Yang et al., 2013). Other important variables to discriminate 249 

the presence of NTSO in VOO were the 1H-signals due to linoleic acid (#13c, #12b, #7c) and 250 

unsaturated fatty acids (#24), which presented higher intensities in NTSO-VOO mixtures than in 251 

most of the other VO-VOO blends (Contiñas et al., 2008; Guillén et al., 2003; Jović et al., 2016; 252 

Ranade et al., 2015; Vigli et al., 2003). Concerning the most important 1H-signals on HOSO 253 

models, the signal intensities of linolenic acid (#13d, #12c) and unsaturated fatty acids (#24 at 254 

5.305.32 ppm) were lower in the HOSO-VOO mixtures; whereas those of linoleic acid (#13c, 255 

#12b, #9c), unsaturated fatty acids (#24 at 5.325.34 ppm) and terpenic alcohols or sterols (#2) 256 

were higher in HOSO-VOO mixtures. These observations agreed with the fact that HOSO presents 257 

higher concentrations of linoleic acid than VOO, HV and EVAO and lower than NTSO; and HOSO 258 

contains lower amounts of linolenic acid than NTSO, VOO and EVAO, and similar to HV (Guillén 259 

et al., 2003; Jović et al., 2016; Ranade et al., 2015). Moreover, the mixture of HOSO with VOO 260 

leads to an increase in the sterol content compared to pure olive oil (Al-Ismail, Alsaed, Ahmad, & 261 

Al-Dabbas, 2010). Evaluating the main variables on the EVAO models, it was observed that the 1H 262 

NMR spectra of the mixtures of EVAO in VOO showed higher intensities for the signals of 263 

saturated fatty acids (#10a, #7a, #9a), oleic acid (#7b, #12a, #9b), linoleic acid (#12b, #13c, #10c), 264 

squalene (#11) and β-sitosterol (#4) than the spectra of the other VO-VOO blends. Meanwhile, the 265 

1H-signals of unsaturated fatty acids (#24, #9 at 1.321.36 ppm) and linolenic acid (#13d, #12c, 266 

#9c) presented lower intensities in the EVAO-VOO blends. Indeed, EVAO presents the highest 267 

contents of the saturated fatty acids, mainly palmitic acid, of all the VOs blended with VOO in this 268 

study; similar intermediate amounts of oleic and linoleic acids as HOSO; and low concentrations of 269 

linolenic acid as VOO, HV and HR (Guillén et al., 2003; Jabeur et al., 2014; Jović et al., 2016; 270 

Ranade et al., 2015). To distinguish blends with high % HV in VOO, the 1H-signals of oleic acid 271 

(#7b, #9b, #12a), whose intensities were significantly higher in the HV class, were among the most 272 

important variables on the HV models. HV presents similar or slightly higher contents of oleic acid 273 

than VOO, and considerably higher amounts compared to the other VOs studied (Guillén et al., 274 
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2003). The opposite trend was shown by the 1H-signals of linoleic (#7c) and linolenic (#12c) acids, 275 

which displayed lower intensity values in the HV class than in the non-HV class. Certainly, the 276 

concentrations of linoleic acid in HV are lower than in the other VOs and slightly higher than in 277 

VOO; and linolenic acid is present in similar amounts in HV and HOSO but lower amounts in HV 278 

than in NTSO, VOO and EVAO (Christopoulou, Lazaraki, Komaitis, & Kaselimis, 2004; Jović et 279 

al., 2016; Vigli et al., 2003). For the distinction of mixtures of low % HR in VOO from other VO-280 

VOO mixtures, the 1H-signals of oleic (#12a) and linolenic (#12c, #7d) acids, saturated fatty acids 281 

(#7a) and terpenic alcohols or sterols (#2) exhibited lower intensities in the HR class (Guillén et al., 282 

2003; Vigli et al., 2003). The most discriminant variables in the models to detect low % S in VOO 283 

were the 1H-signals of linolenic acid (#15b, #7d, #12c) and unsaturated fatty acids (#24), which 284 

presented significantly higher intensities in S-VOO blends than in the other VO-VOO blends. 285 

Soybean oil is the oil with the highest contents of linolenic acid among the studied VOs (Contiñas 286 

et al., 2008; Christopoulou et al., 2004; Guillén et al., 2003; Jabeur et al., 2014; Vigli et al., 2003). 287 

Furthermore, the lower signal intensities of oleic (#7b) and linoleic (#13c) acids in the S class also 288 

contributed to the discrimination of both classes, being consistent with the literature reporting that 289 

soybean oil presents significantly lower contents of oleic acid than VOO, and similar contents of 290 

linoleic acid as other VOs, such as sunflower oil (Guillén et al., 2003; Jović et al., 2016; Vigli et al., 291 

2003). 292 

3.4. PLS-DA models to discriminate blends of OO with VO 293 

Satisfactory binary classification models for all the studied VOs (RPOO, CO, HOSO, NTSO, 294 

DOSO, RAO and HR) were obtained using the data of the full % range of VO in the OO mixture, 295 

i.e. 080% VO in OO (PLS-DA models 3036 in Table S4 (supplementary material). Prediction 296 

abilities were 95100% for both classes in the models developed to discriminate between OO 297 

blends with and without RPOO, CO or HOSO; 8487% for the OO mixtures with NTSO, DOSO or 298 

RAO, and 9197% for the OO blends that did not contain the corresponding specific VO; and 97% 299 
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for the HR class and 89% for the non-HR class. These classification results were improved for each 300 

VO by further PLS-DA models developed separately for blends with low or high % VO in OO. 301 

Hence, the oil sample containing OO is first classified according to its level of VO, i.e. low (020% 302 

VO in OO) or high (3080% VO in OO), by PLS-DA model-29 with prediction abilities of 96% 303 

and 94% respectively (Table 1). The most influential variables on this model were the 1H-signals of 304 

saturated fatty acids (#7a), β-sitosterol (#4), linoleic acid (#12b, #15a, #13c) and unsaturated fatty 305 

acids (#24, #7 at 1.001.02 ppm, #9 at 1.321.33 ppm), which exhibited lower intensities in the low 306 

class; and those of linolenic (#7d, #15b) and oleic (#12a) acids, which displayed higher intensities 307 

in the low class. The chemical composition of the blends that constituted each class justified these 308 

observations; thus, the low class contained the samples with the highest % of OO, which is the oil 309 

that contains the highest concentrations of oleic acid, together with HR; whereas the high class 310 

included the samples with high % of VO characterised by high linoleic and β-sitosterol contents 311 

(Al-Ismail et al., 2010; Aparicio & Harwood, 2013; Green & Wang, 2020; Guillén et al., 2003; 312 

Jović et al., 2016; Parcerisa, Casals, Boatella, Codony, & Rafecas, 2000; Vigli et al., 2003). 313 

An oil sample containing low % VO in OO is then subjected to various classification models (PLS-314 

DA models 3750) to identify the specific VO contained in the OO blend (Tables 2 and S5 in 315 

supplementary material). The recognition and prediction abilities of these models were higher than 316 

95% of hits for detecting RPOO, CO and HOSO in OO; c.a. 90% for NTSO, DOSO and HR in OO; 317 

and c.a. 8085% for RAO in OO. Taking into account that all CO-OO blends, 95% of the RPOO-318 

OO blends, and at least 95% of the OO blends not containing CO or RPOO were identified with the 319 

corresponding models for low % VO in OO, further classification models were developed using 320 

datasets without the 1H-NMR spectral data of RPOO-OO and CO-OO mixtures. The PLS-DA 321 

models achieved (PLS-DA models 5155) afforded better classification abilities to detect NTSO 322 

and RAO in OO, and similar results to resolve the presence of HOSO, DOSO or HR in OO (Table 323 

S6 in supplementary material). 324 
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For oil samples with high % VO in OO, the classification models developed for blends with 325 

2080% VO in OO (PLS-DA models 5662) presented recognition and prediction abilities of 326 

98100% for both classes in RPOO, CO, DOSO and HR models; ≥91% for both classes in NTSO 327 

and RAO models; and 86% for the HOSO class and 99% for the non-HOSO class (Table 3). Since 328 

all blends were correctly classified by the RPOO and CO models, further PLS-DA models to detect 329 

2080% VO in OO were built using a dataset without the 1H-NMR spectral data of RPOO-OO and 330 

CO-OO blends (PLS-DA models 6367 in Table S7 in supplementary material). These models 331 

provided the same or better classification abilities than the previous ones, except for HR-OO blends. 332 

Indeed, the NTSO and HOSO models allowed the correct classification of all samples of both 333 

classes; and the RAO model identified all samples containing RAO and 92% of the samples in the 334 

non-RAO class. The main 1H-signals responsible for the identification of OO blends containing 335 

RPOO were those of saturated fatty acids (#9a), which presented significantly higher intensities in 336 

the RPOO-OO blends; and those of linoleic acid (#9c, #12b), which showed lower intensities in the 337 

RPOO class. The 1H-signals #9a and #9c were completely discriminants between OO blends 338 

containing ≥20% RPOO and the other VO-OO blends with high % VO. As a result, the 339 

measurement of just one of these two variables would be enough to confirm whether an OO is 340 

mixed with RPOO in percentages ≥20%. Palm oil is the oil that contains the highest amounts of 341 

saturated fatty acids among the VOs studied (Vigli et al., 2003). Palmitic acid is the major saturated 342 

fatty acid in palm oil and is contained in similar amounts as oleic acid. Meanwhile, linoleic acid is a 343 

minor compound in palm oil, present in similar concentrations as in OO, and in lower amounts than 344 

in the rest of VOs (Montoya, Cochard, Flori, Cros, Lopes, Cuellar, et al., 2014). The CO-OO blends 345 

were distinguished from the other VO-OO mixtures due to the 1H-signals of linoleic (#7c) and 346 

linolenic (#15b, #7d) acids, saturated fatty acids (#7a) and β-sitosterol (#4), which presented higher 347 

intensities in the blends containing CO; and to the signal of oleic acid (#9b) with lower intensities in 348 

the CO class. Actually, corn oil presents linoleic acid in amounts similar to sunflower oil and 349 

significantly higher than refined avocado, refined hazelnut, palm and olive oils; linolenic acid and 350 
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β-sitosterol in slightly higher concentrations than the other oils studied; saturated fatty acids in 351 

lower contents than palm oil but similar or slightly higher than the rest of the oils considered in the 352 

model; and the lowest content of oleic acid, together with sunflower oil. (Aparicio et al., 2013; 353 

Guillén et al., 2003; Monfreda et al., 2012; Vigli et al., 2003). The major contributors to the 354 

discrimination of HOSO from other VOs in OO were the 1H-signals of oleic (#9b, #12a) and 355 

linoleic (#12b, #9c) acids and saturated (#9a) and unsaturated (#24, #9 at 1.301.34 ppm) fatty 356 

acids, which exhibited higher intensities in the OO blends with HOSO. Indeed, HOSO contains 357 

higher amounts of oleic acid than sunflower, corn and palm oils; similar to avocado oil; and lower 358 

than hazelnut and olive oils. Linoleic acid is present in larger concentrations in HOSO than in palm, 359 

olive, hazelnut and avocado oils, and smaller than in sunflower and corn oils. The content of 360 

saturated fatty acids (#9a) in HOSO is intermediate-high with respect to other VOs but far from 361 

those of RPOO, which exhibit the largest contents (Green et al., 2020; Guillén et al., 2003; Jović et 362 

al., 2016; Vigli et al., 2003). As in NTSO-VOO models, the most influential variables on the 363 

classification models achieved for the detection of NTSO in OO were the 1H-signals of linoleic acid 364 

(#7c, #15a, #12b) and unsaturated fatty acids (#24, #7 at 1.001.02 ppm, #9 at 1.321.36 ppm), 365 

displaying higher intensities in the OO blends with NTSO; and oleic acid (#12a, #7b, #9b), showing 366 

the opposite trend. For OO blends with 2080% NTSO, once the presence of RPOO and CO in the 367 

OO blend was discarded by the PLS-DA models 56 and 57 respectively (Table 3), not only the 368 

signal of oleic acid (#9b) but also several other signals (#15a, #12b, #9 at 1.341.36 ppm, #24) were 369 

completely discriminant between both classes; therefore any of them can be used as markers to 370 

determine whether an OO blend contains NTSO at concentrations ≥20%. Sunflower oil is 371 

characterised by the largest contents of linoleic and unsaturated fatty acids, and the lowest contents 372 

of oleic acid with regard to the other VOs studied (Guillén et al., 2003; Jabeur et al., 2014; Jović et 373 

al., 2016; Monfreda et al., 2012; Yang et al., 2013). The DOSO models disclosed that the intensities 374 

of the 1H-signals due to oleic acid (#12a, #9b) were significantly higher in DOSO-OO blends, in 375 

contrast with linoleic acid (#12b, #7c, #24) signals exhibiting higher intensities in the non-DOSO 376 
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class. During the desterolization process, it takes place the dehydration of sterols and the 377 

elimination of the acid group of sterol esters by bleaching, producing olefinic degradation products 378 

and di-steryl ethers; meanwhile the profiles of triacylglycerides and fatty acids are practically 379 

unaltered (Grob, Biedermann, Bronz, & Giuffré, 1994). Therefore, it would be expected that DOSO 380 

presents relatively high contents of oleic and linoleic acids as HOSO. However, the deodorization 381 

process may affect the composition of triglycerides, diglycerides, fatty acids and minor components 382 

of the unsaponifiable fraction, depending mainly on the temperature and time of the process 383 

(Aparicio et al., 2013), which could be responsible for the lower content of linoleic acid observed in 384 

DOSO blends in relation to the other VOs, including HOSO. The main 1H-signals on the RAO 385 

models were linoleic (#7c, #12b, #13c, #10c) and oleic (#9b) acids and β-sitosterol (#4), exhibiting 386 

similar or higher intensities in RAO-OO blends; linolenic acid (#13d, #9c) and unsaturated fatty 387 

acids (#9 at 1.321.34 ppm, #24), displaying similar or lower intensities in the RAO class; and 388 

saturated fatty acids (#9 at 1.201.22 ppm) with intermediate intensities. In fact, refined avocado 389 

oil, compared to the other VOs studied, presents intermediate compositions of fatty acids (Guillén et 390 

al., 2003; Jabeur et al., 2014; Jović et al., 2016; Vigli et al., 2003; Yang et al., 2013) and sterol 391 

contents, in particular, β-sitosterol (Al-Ismail et al., 2010; Green et al., 2020; Parcerisa et al., 2000). 392 

The most contributing variables to the identification of HR in OO were the 1H-signals of oleic (#7b, 393 

#12a, #9b) and linoleic (#12b) acids, presenting higher intensities in the HR class; and the signals of 394 

linolenic acid (#7d, #15b, #12c, #13d), unsaturated (#24) and saturated (#10a, #7a) fatty acids and 395 

terpenic alcohols or sterols (#2), showing lower intensities in the HR-OO mixtures. The trend of 396 

oleic and linoleic signals observed in HR-OO is opposite to that in HR-VOO. Refined hazelnut oil 397 

contains the highest amounts of oleic acid among the VOs studied, comparable to those in OO but 398 

lower than VOO; the lowest linolenic contents, similar to those found in HOSO (Green et al., 2020; 399 

Guillén et al., 2003; Jović et al., 2016; Parcerisa et al., 2000; Vigli et al., 2003); and characteristic 400 

profiles of sterols and terpenic alcohols (Al-Ismail et al., 2010; Aparicio et al., 2013; Parcerisa et 401 

al., 2000). 402 
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3.5. PLS-R models to determine the percentage of VO in a blend with VOO or OO 403 

PLS regression models to determine the % VO contained in a binary mixture with VOO or OO 404 

(PLS-R models 127) were successfully built for all VOs studied (Table 4). The PLS-R models 405 

developed for different sub-ranges of % VO in VOO or OO provided more accurate predictions 406 

than those constructed for the full % VO range. The most influential variables on the regression 407 

models coincided with those on the classification ones. Therefore, the regression results were 408 

explained by the characteristic composition in fatty acids, triacylglycerides and squalene of the oils 409 

present in the blend. In VO-VOO models, diacylglycerides, terpenic alcohols and sterols were also 410 

decisive. 411 

All regression models presented excellent precisions; yielding R2 values 0.930.990, except for the 412 

low % range models of VOO mixtures with NTSO, HOSO, HR and S. The PLS-R models for low 413 

% NTSO, HOSO and S in VOO presented R2 values <0.70, indicating that the equation can only be 414 

used for screening purposes, which enables to distinguish between low, medium and high values of 415 

% VO. The PLS-R model for low % HR in VOO showed R2 values <0.50, so the equation only 416 

discriminates between high and low values (Priego Capote, Ruiz Jiménez, & Luque De Castro, 417 

2007), in the same way as PLS-DA model-73 distinguishes 25% HR and 10% HR in VOO (Table 418 

5). 419 

The regression models achieved allow to determine the % VO in a VOO blend with uncertainties 420 

under 5% R-RMSEP for contents of ≥10% NTSO, ≥34% EVAO, ≥39% HOSO and ≥45% HV; 421 

510% R-RMSEP for contents of 1345% HV; 515% R-RMSEP for contents of 810% NTSO, 422 

734% EVAO, 2039% HOSO and 1026% HV; 1520% R-RMSEP for contents of 68% NTSO, 423 

57% EVAO, 1720% HOSO and 5% S; and with uncertainty of 28% R-RMSEP for contents of 424 

10% HR. Considering VO-OO blends, the % VO in OO was quantified with uncertainties under 5% 425 

R-RMSEP for contents of ≥5% RPOO, ≥6% CO, ≥10% HR, ≥16% DOSO, ≥16% HOSO, ≥9% 426 

NTSO and ≥31% RAO; 515% R-RMSEP for contents of 25% RPOO, 26% CO, 310% HR, 427 
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516% DOSO, 716% HOSO, 39% NTSO and 531% RAO; and 1520% R-RMSEP for 428 

contents of 23% HR, 45% DOSO, 57% HOSO, 23% NTSO and 45% RAO. 429 

The classification abilities of the PLS-DA models to identify blends with low % HV, HR, HOSO 430 

and NTSO in VOO and low % RAO in OO were considerably improved when the samples of 2% 431 

VO in VOO and/or pure olive oil (VOO or OO) were removed from the dataset used to develop the 432 

models (Table 2), indicating that these samples were close to the boundary and therefore could be 433 

misclassified. Regarding this fact and the precisions and accuracies of the regression models built, 434 

the experimental detection limits were established in the ranges between 25% VO for blends of 435 

HV, HR, HOSO or NTSO in VOO; between 24% VO for blends of RAO in OO; and under 2% 436 

VO for blends of EVAO or S in VOO and RPOO, CO, HOSO, NTSO, DOSO or HR in OO. The 437 

present results are similar or outperform those reported in the literature using NMR (Parker et al., 438 

2014; Wang et al., 2020) or other analytical techniques (De La Mata-Espinosa et al., 2011; Grob et 439 

al., 1994; Jabeur et al., 2014; Jović et al., 2016; Monfreda et al., 2012). In previous high-field NMR 440 

studies, the adulteration of refined hazelnut oil in olive oil was detected at a proportion of 10% 441 

using 1H-NMR and linear discriminant analysis (Mannina et al., 2009), 8% using 1H and 13C-NMR 442 

and artificial neural networks (García-González et al., 2004), 1% using 1H and 31P-NMR and 443 

canonical discriminant analysis or classification trees (Agiomyrgianaki et al., 2010), and 5% of 444 

hazelnut oil in VOO using 13C-NMR and discriminant data analysis (Zamora et al., 2001). 1H and 445 

31P-NMR together with discriminant analysis allowed the detection of adulterations as low as 5% of 446 

hazelnut, corn, sunflower and soybean oils in VOO (Vigli et al., 2003). 13C-NMR and discriminant 447 

data analysis distinguished palm oil at 5% in OO (Guyader, Thomas, Portaluri, Jamin, Akoka, 448 

Silvestre, et al., 2018). The determination of the contents of oleic, linoleic, linolenic and saturated 449 

fatty acids and squalene by 1H-NMR enabled the detection of 4.5% soybean oil in VOO (Jiang et 450 

al., 2018). Nevertheless, chromatographic techniques afforded the lowest limits of detection for 451 

sunflower, soybean, corn and palm oils in VOO, detecting even 0.1% adulteration (Jabeur, Zribi, & 452 

Bouaziz, 2016). 453 
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3.6. PLS-DA models to discriminate between ‘legal’ and ‘illegal’ blends of VOO or OO 454 

with VO 455 

The potential of the present multivariate approach to implement Reg. (EU) 29/2012 and its 456 

amendments is demonstrated with a case study. The most common vegetable oil used to be blended 457 

with olive oil is sunflower oil. Therefore NTSO and HOSO were considered as model VOs in 458 

‘legal’ blends with VOO or OO, as done in previous studies (Gómez-Coca et al., 2020; Monfreda et 459 

al., 2012). The olive oil blends with the other VOs studied were regarded as ‘illegal’ blends. Binary 460 

classification models were developed to first distinguish between ‘legal’ and ‘illegal’ blends, and 461 

then differentiate which of the two types of sunflower oils, i.e. NTSO or HOSO, is in the ‘legal’ 462 

blend with VOO or OO (Figure S1 in supplementary material). The percentage of NTSO or HOSO 463 

in the mixture is determined by the regression models that are reported in the previous section 464 

(Table 4). 465 

The PLS-DA model discriminating between ‘legal’ and ‘illegal’ blends provided prediction abilities 466 

of 77% for both classes concerning blends with VOO (PLS-DA model-68), and 86% and 98% 467 

respectively for blends with OO (PLS-DA model-70 in Table 5). The most discriminant variables 468 

on these models are shown in Table S8 (supplementary material). The trends observed for the 1H-469 

signals involved were consistent with the known differences in the chemical composition of NTSO 470 

and HOSO with respect to the VOs in the ‘illegal’ class and both categories of olive oils, already 471 

mentioned above. 472 

In addition, classification models were constructed to distinguish ‘legal’ blends containing NTSO 473 

from those with HOSO, affording prediction abilities of 8385% for blends with VOO (PLS-DA 474 

model-69), and 97% for blends with OO (PLS-DA model-71 in Table 5). HOSO contains higher 475 

amounts of oleic acid and lower concentrations of linoleic and linolenic acids (polyunsaturated fatty 476 

acids) than NTSO (Jović et al., 2016), which is reflected on the most influential 1H-signals on these 477 

models (Table S8 in supplementary material). 478 
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3.7. PLS-DA models to discriminate between blends of VOO or OO with different 479 

compositions 480 

Further binary classification models can be built using datasets containing only the information 481 

related to specific VOs or % VO in the blends. These complementary models are useful whenever 482 

an oil sample is predicted to contain a certain VO by more than one of the classification models 483 

described above. Likewise, in the case that the determination of the % VO is not enough accurate 484 

by the corresponding regression model for low percentages, it is interesting to be able to 485 

discriminate between mixtures with different % VO. As a proof of concept, binary classification 486 

models were developed to distinguish blends of different % S or HR in VOO (PLS-DA models 72 487 

and 73); and OO mixtures containing DOSO or HR (PLS-DA model-74), RAO or HR (PLS-DA 488 

model-75), RAO or DOSO (PLS-DA model-76) and DOSO or HOSO (PLS-DA model-77), with 489 

satisfactory classification abilities (Table 5). The most influential 1H-signals on these models are 490 

gathered in Table S8 (supplementary material). Depending on the class and model considered, 491 

different trends were observed in the signal intensities, which are in accordance with the relative 492 

chemical composition of each kind of oil in the blend previously reported. The major fatty acids in 493 

S and VOO are linoleic acid and oleic acid respectively  (Vigli et al., 2003). VOO contains higher 494 

amounts of squalene and linolenic acid than HR, and the opposite occurs for linoleic acid (Guillén 495 

et al., 2003; Vigli et al., 2003). HR presents higher contents of oleic acid, similar concentrations of 496 

linoleic acid and lower amounts of saturated fatty acids than RAO (Green et al., 2020; Parcerisa et 497 

al., 2000). In respect of the main variables on the models obtained for the discrimination of DOSO-498 

OO blends from other VO-OO mixtures, DOSO-OO blends contained higher concentrations of 499 

oleic acid than OO blends of HR, RAO and HOSO, which are the VOs that present the highest 500 

contents of oleic acid (Green et al., 2020; Guillén et al., 2003; Jović et al., 2016; Parcerisa et al., 501 

2000); and lower amounts of linoleic acid than OO blends of HR, RAO and HOSO. Taking into 502 

account that DOSO is obtained from the desterolization and deodorization of HOSO, these results 503 

evidenced that during the deodorization and/or desterolization processes the fatty acid profile of the 504 



22 

oil was altered, resulting in lower linoleic and higher oleic contents. In this sense, it has been 505 

already reported that the drastic conditions used during raffination processes lead to olefinic 506 

degradation of sterols, the isomerization of squalene and linoleic and linolenic acids, among other 507 

changes in the chemical composition of the oil (Aparicio et al., 2013; Grob et al., 1994). 508 

3.8. Prediction of blends of olive oil with other vegetable oils 509 

The composition of thirty-six blind oil samples provided within the OLEUM Project and eight 510 

commercial oils was predicted by the classification and regression models developed for blends of 511 

olive oil with other vegetable oils following the decision trees shown in Figures 1 and S1 512 

(supplementary material). For each blind sample, Table S9 (supplementary material) gathers i) the 513 

PLS-DA and PLS-R models applied; ii) the PLS-DA predictions related to the category of the olive 514 

oil (VOO or OO), the VO contained, and the low/high level of VO in the blend (Tables 13, S2S7 515 

in supplementary material); iii) the % VO in the blend determined by the corresponding PLS-R 516 

model (Table 4); and iv) the predictions of the complementary PLS-DA models (Table 5). Most of 517 

the blind samples were predicted satisfactorily according to the description provided (Table S9 in 518 

supplementary material); thus, the category of olive oil, i.e. VOO or OO, the particular VO and the 519 

% VO in the oil sample were accurately determined. All mixtures of VOO or OO with 4060% 520 

NTSO or HOSO (112), all the blends (containing 530% VO) of RPOO-OO (2932) and HV-521 

VOO (1720), and the blends of EVAO-VOO (1416) and HR-OO (2628) with ≥10% VO were 522 

correctly identified and the % VO properly figured out. Only blind samples 16, 17 and 19 were 523 

predicted to present slightly higher % VO in VOO, and sample 26 scarcely lower % HR in OO, than 524 

those percentages given in the description. The DOSO-OO blends (3336) were satisfactorily 525 

determined by the corresponding classification and regression models; the % DOSO in OO in 526 

sample 36 was barely lower than predicted. The blend of 10% DOSO in OO (34) was confused with 527 

mixtures of 211% of HOSO in OO. For the blend of 5% EVAO in VOO (13), the contained VO 528 

was not recognised by any of the classification models, but the calculated % VO was within the 529 
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calibration range of the regression model developed for EVAO-VOO blends; and this model 530 

predicted correctly the % EVAO in the mixture, even with better precisions than the other models 531 

built for HOSO-VOO and HR-VOO blends. The VO in the blend of 5% HR in OO (25) was not 532 

identified by any of the HR-OO classification models. Indeed, the detection of the adulteration of 533 

OO with HR is still one of the main challenges in fraud detection due to the close composition of 534 

both refined oils (Agiomyrgianaki et al., 2010; García-González et al., 2004; Mannina et al., 2009). 535 

Even blends with ≤10% HR in OO can be confused with RAO-OO blends. The composition of 536 

blind samples 2124 were determined by the classification and regression models built for both 537 

RAO-OO and DOSO-OO blends; however, the PLS-DA model-76 (Table 5), which distinguishes 538 

these two OO mixtures, predicted satisfactorily that these blind samples contained RAO, except for 539 

the mixture of 10% RAO in OO (22). 540 

Regarding the commercial oils analysed, samples 37, 38 and 44 were declared to be mixtures of 541 

vegetable oils or NTSO with EVOO or VOO. Samples 37 and 38 were confirmed to contain VOO, 542 

whereas sample 44 was classified as an OO blend. Furthermore, the three samples were predicted to 543 

contain NTSO, in accordance with their label specifications. All the other commercial oil samples 544 

(3943) were labelled as mixtures of VOO or EVOO with rapeseed oil; however, all of them were 545 

classified as blends of OO. These results are not conclusive since no blends of rapeseed oil with 546 

VOO or OO were available to be included in the modelling step of the present study. 547 

4. Conclusion 548 

A stepwise strategy based on 1H-NMR fingerprinting of an oil sample in combination with 549 

chemometrics is proposed to determine the content of mixtures of oils of the ‘virgin olive oil’ or 550 

‘olive oil’ categories and vegetable oils, providing a chemical tool to (i) confirm the presence of 551 

VOO or OO in an oil sample; (ii) discriminate between pure olive oils and their blends with VOs to 552 

a certain extent, given by the detection limit disclosed for each VO; (iii) identify the VO in the 553 

blend with VOO or OO; (iv) differentiate between blends made with different VOs in VOO or OO; 554 
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(v) distinguish blends made with the same VO in different proportions; and (vi) determine the % 555 

VO blended with VOO or OO. 556 

1H-NMR spectral data of olive oils and their mixtures with the VOs most commonly used to make 557 

blends, i.e. sunflower oil, high oleic sunflower oil, desterolized high oleic sunflower oil, virgin and 558 

refined avocado oil, virgin and refined hazelnut oil, refined palm olein oil, corn oil and soybean oil, 559 

was used to optimize and validate classification and regression models built by PLS-DA and PLS-R 560 

respectively. The classification models achieved were satisfactory, robust and stable. Excellent 561 

precisions and acceptable accuracies were afforded by the regression models developed for the 562 

determination of the % VO in VOO or OO. The reliability of the classification and regression 563 

models was supported by the chemical interpretation of the most influential variables on the 564 

validated models. The % VO in the blend is determined with uncertainties under the 20% of R-565 

RMSEP for contents as low as 5% EVAO or S, 6% NTSO, 10% HV and 17% HOSO in VOO; and 566 

2% RPOO, CO, NTSO or HR, 4% DOSO or RAO and 5% HOSO in OO. The detection limits are 567 

under 2% EVAO or S and between 25% NTSO, HOSO, HV or HR in VOO; and under 2% RPOO, 568 

CO, HOSO, NTSO, DOSO or HR and 24% RAO in OO. The performance and effectiveness of the 569 

proposed strategy were validated by a set of blind samples, which confirmed its feasibility to 570 

support Reg. (EU) 29/2012. Further studies should be carried out with larger balanced sample sets 571 

covering the variability of olive oils of both categories (VOO and OO) and the vegetable oils of 572 

interest. The different possible sources of variability, such as the varieties of each botanical oil 573 

species, the agronomical and climatic conditions, the geographical origins and harvests, should be 574 

considered. The implementation of this approach requires a databank of 1H-NMR fingerprints of 575 

oils. The databank has to include pure oils comprising olive oils of the different categories, 576 

vegetable oils used to make legal blends and adulterant oils, and their mixtures; because it has to be 577 

representative of oil variability in order to guarantee robust models for both authentication and 578 

fraud detection. It is worth noting that this requirement is feasible in practice since the creation of 579 

the OLEUM Databank and the OLEUM Network are among the objectives of the OLEUM Project 580 
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that are being accomplished. The OLEUM Databank is an online integrated quality assurance 581 

database of olive oil analytical methods and chemical data, which is currently being developed. The 582 

OLEUM Network is a worldwide community of proficient analytical laboratories involved in olive 583 

oil analysis, and it is expected to expand and may also contribute to the feeding and updating of the 584 

databank over time. 585 
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Figure captions 728 

Figure 1. Decision tree constituted of PLS-DA classification and PLS-R regression models to 729 

determine the composition of binary mixtures of oils of the ‘virgin olive oil’ or ‘olive oil’ categories 730 

and other vegetable oils. Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; 731 

NTSO, refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic 732 

sunflower oil; DOSO, desterolized and deodorized high oleic sunflower oil; HR, refined hazelnut 733 

oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, virgin avocado oil; RAO, refined 734 

avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 735 

 736 

Supplementary material 737 

Figure S1. Decision tree constituted of PLS-DA classification and PLS-R regression models for 738 

a case-study: Discrimination between ‘legal’ (containing NTSO or HOSO) and ‘illegal’ (not 739 

containing NTSO or HOSO) blends, and determination of % NTSO or HOSO in binary mixtures 740 

with oils of the ‘virgin olive oil’ or ‘olive oil’ categories. Abbreviations: VOO, virgin olive oil; OO, 741 

olive oil; VO, vegetable oil; NTSO, refined conventional sunflower oil (normal type sunflower oil); 742 

HOSO, refined high oleic sunflower oil. 743 
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Tables 1 

Table 1 2 

PLS-DA models to discriminate between pure and blended oils containing oils of the ‘virgin olive oil’ 3 

or ‘olive oil’ categories and vegetable oils, and binary mixtures with different proportions of vegetable 4 

oil in olive oil.1 5 

PLS-DA 

model Data 

PLS-

comp Boundary Class2 

Class 

code n p %R %P 

1 Pure & blend VOO/OO 4 0.4079 VOO 0 838 0.70 97 97 

OO 1 356 0.30 98 98 

2 Pure & blend VOO 6 0.3283 020% VOs in 

VOO (low) 

0 704 0.84 98 98 

2590% VOs in 

VOO (high) 

1 132 0.16 97 97 

3 020% VOs in VOO 5 0.2230 220% VOs in 

VOO 

0 549 0.78 90 89 

Pure VOO 1 155 0.22 86 86 

4 02% VOs in VOO 14 0.4264 2% VOs in 

VOO 

0 204 0.57 90 90 

Pure VOO 1 155 0.43 93 92 

5 2% VOs in VOO 19 0.4265 non-S 0 159 0.78 99 97 

S 1 45 0.22 100 100 

29 Pure & blend OO 16 0.4388 020% VOs in 

OO (low) 

0 184 0.52 97 96 

3080% VOs in 

OO (high) 

1 171 0.48 95 94 

6 

1 Abbreviations: n, number of samples; centered data; PLS-comp, number of PLS components; p, prior probability; %R, % of recognition 7 

ability; %P, % of prediction ability in cross-validation; VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; NTSO, refined 8 

conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic sunflower oil; DOSO, desterolized and deodorized 9 

high oleic sunflower oil; HR, refined hazelnut oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, virgin avocado oil; RAO, 10 

refined avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 11 

2 Samples contained in each class: VOO, pure VOOs and blends of VOO with VOs (NTSO, HOSO, EVAO, HV, HR or S); OO, pure 12 

OOs and blends of OO with VOs (RPOO, CO, HOSO, NTSO, DOSO, RAO or HR); 020% VOs in VOO, pure VOOs and blends of 13 

VOO with 220% VOs (NTSO, HOSO, EVAO, HV, HR or S); 2590% VOs in VOO, blends of VOO with 2590% VOs (NTSO, 14 

HOSO, EVAO, HV, HR or S); 220% VOs in VOO, blends of VOO with 220% VOs (NTSO, HOSO, EVAO, HV, HR or S); Pure 15 

VOO, pure VOOs; 2% VOs in VOO, blends of VOO with 2% VOs (NTSO, HOSO, EVAO, HV, HR or S); non-S, blends of VOO with 16 

2% VOs (NTSO, HOSO, EVAO, HV or HR); S, blends of VOO with 2% S; 020% VOs in OO, pure OOs and blends of OO with 17 

220% VOs (RPOO, CO, HOSO, NTSO, DOSO, RAO or HR); 3080% VOs in OO, blends of OO with 3080% VOs (RPOO, CO, 18 

HOSO, NTSO, DOSO, RAO or HR).19 

Tables 1-5



2 

Table 2 20 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 220% 21 

vegetable oil in olive oil.1 22 

PLS-DA 

model Data 

PLS-

comp Boundary Class2,3,4 

Class 

code n p %R %P 

18 520% non-NTSO in VOO  7 0.3029 non-NTSO 0 267 0.77 93 91 

  520% NTSO in VOO      NTSO 1 78 0.23 94 90 

19 520% non-HOSO in VOO  16 0.4039 non-HOSO 0 243 0.70 88 85 

  520% HOSO in VOO      HOSO 1 102 0.30 92 88 

20 520% non-EVAO in VOO  11 0.3002 non-EVAO 0 330 0.96 98 98 

  520% EVAO in VOO      EVAO 1 15 0.04 93 93 

21 520% non-HV in VOO  13 0.2335 non-HV 0 300 0.87 91 83 

  520% HV in VOO      HV 1 45 0.13 91 87 

22 520% non-HR in VOO  20 0.3291 non-HR 0 285 0.83 90 83 

  520% HR in VOO      HR 1 60 0.17 93 88 

23 520% non-S in VOO  7 0.3715 non-S 0 300 0.87 98 97 

  5% S in VOO      S 1 45 0.13 98 98 

24 220% non-S in VOO  13 0.4514 non-S 0 166 0.65 99 97 

  25% S in VOO      S 1 90 0.35 98 97 

44 220% VOs in OO  2 0.2604 non-RPOO 0 130 0.86 98 97 

        RPOO 1 21 0.14 95 95 

45 220% VOs in OO  7 0.3987 non-CO 0 132 0.87 96 96 

        CO 1 20 0.13 100 100 

46 220% VOs in OO  3 0.3359 non-HOSO 0 140 0.92 98 98 

        HOSO 1 12 0.08 100 100 

47 220% VOs in OO  12 0.3176 non-NTSO 0 114 0.75 96 89 

        NTSO 1 38 0.25 97 89 

48 220% VOs in OO  8 0.2189 non-DOSO 0 131 0.87 92 85 

        DOSO 1 20 0.13 95 95 

49 220% VOs in OO  6 0.2633 non-RAO 0 131 0.86 83 82 

        RAO 1 21 0.14 90 90 

50 220% VOs in OO  14 0.3408 non-HR 0 131 0.87 97 92 

        HR 1 19 0.13 100 95 
 23 

1 See abbreviations in Table 1. 24 

2 Samples contained in each class for PLS-DA models 1823: non-NTSO, blends of VOO with 520% VOs (HOSO, EVAO, HV, HR or 25 

S); NTSO, blends of VOO with 520% NTSO; non-HOSO, blends of VOO with 520% VOs (NTSO, EVAO, HV, HR or S); HOSO, 26 

blends of VOO with 520% HOSO; non-EVAO, blends of VOO with 520% VOs (NTSO, HOSO, HV, HR or S); EVAO, blends of 27 

VOO with 520% EVAO; non-HV, blends of VOO with 520% VOs (NTSO, HOSO, EVAO, HR or S); HV, blends of VOO with 28 

520%HV; non-HR, blends of VOO with 520% VOs (NTSO, HOSO, EVAO, HV or S); HR, blends of VOO with 510% HR; non-S, 29 

blends of VOO with 520% VOs (NTSO, HOSO, EVAO, HV or HR); S, blends of VOO with 5% S. 30 

3 Samples contained in each class for PLS-DA models 24: non-S, blends of VOO with 2-20% VOs (NTSO, HOSO, EVAO, HV or HR); 31 

S, blends of VOO with 25% S. 32 



3 

4 Samples contained in each class for PLS-DA models 4450: non-RPOO, blends of OO with 220% VOs (CO, HOSO, NTSO, DOSO, 33 

RAO or HR); RPOO, blends of OO with 220% RPOO; non-CO, blends of OO with 220% VOs (RPOO, HOSO, NTSO, DOSO, RAO 34 

or HR); CO, blends of OO with 220% CO; non-HOSO, blends of OO with 220% VOs (RPOO, CO, NTSO, DOSO, RAO or HR); 35 

HOSO, blends of OO with 220% HOSO; non-NTSO, blends of OO with 220% VOs (RPOO, CO, HOSO, DOSO, RAO or HR); 36 

NTSO, blends of OO with 220% NTSO; non-DOSO, blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, RAO or HR); 37 

DOSO, blends of OO with 220% DOSO; non-RAO, blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, DOSO or HR); RAO, 38 

blends of OO with 220% RAO; non-HR, blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, DOSO or RAO); HR, blends of 39 

OO with 220% HR.  40 
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Table 3 41 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 2090% 42 

vegetable oil in olive oil.1 43 

PLS-DA 

model Data 

PLS-

comp Boundary Class2,3 

Class 

code n p %R %P 

25 2080% non-NTSO in VOO  4 0.4955 non-NTSO 0 73 0.47 100 100 

  2090% NTSO in VOO      NTSO 1 83 0.53 100 100 

26 
2090% non-HOSO in 

VOO  
4 0.4120 non-HOSO 0 130 0.83 100 100 

  2080% HOSO in VOO      HOSO 1 26 0.17 92 92 

27 
2090% non-EVAO in 

VOO  
4 0.3985 non-EVAO 0 131 0.84 100 99 

  2080% EVAO in VOO      EVAO 1 25 0.16 100 100 

28 2090% non-HV in VOO  3 0.3563 non-HV 0 134 0.86 100 100 

  2080% HV in VOO      HV 1 22 0.14 100 100 

56 2080% VOs in OO  1 0.3445 non-RPOO 0 185 0.88 100 100 

        RPOO 1 25 0.12 100 100 

57 2080% VOs in OO  7 0.4410 non-CO 0 178 0.85 100 100 

        CO 1 31 0.15 100 100 

58 2080% VOs in OO  5 0.4063 non-HOSO 0 182 0.87 99 99 

        HOSO 1 28 0.13 86 86 

59 2080% VOs in OO  6 0.3650 non-NTSO 0 151 0.72 100 99 

        NTSO 1 59 0.28 93 92 

60 2080% VOs in OO  4 0.3127 non-DOSO 0 188 0.90 100 99 

        DOSO 1 20 0.10 100 100 

61 2080% VOs in OO  5 0.3195 non-RAO 0 187 0.89 95 94 

        RAO 1 23 0.11 91 91 

62 2080% VOs in OO  9 0.3083 non-HR 0 187 0.91 99 98 

        HR 1 19 0.09 100 100 

1 See abbreviations in Table 1. 44 

2 Samples contained in each class for PLS-DA models 2528: non-NTSO, blends of VOO with 2080% VOs (HOSO, EVAO or HV); 45 

NTSO, blends of VOO with 2090% NTSO; non-HOSO, blends of VOO with 2090% VOs (NTSO, EVAO or HV); HOSO, blends of 46 

VOO with 2080% HOSO; non-EVAO, blends of VOO with 2090% VOs (NTSO, HOSO or HV); EVAO, blends of VOO with 47 

2080% EVAO; non-HV, blends of VOO with 2090% VOs (NTSO, HOSO or EVAO); HV, blends of VOO with 2080% HV. 48 

3 Samples contained in each class for PLS-DA models 5662: non-RPOO, blends of OO with 2080% VOs (CO, HOSO, NTSO, DOSO, 49 

RAO or HR); RPOO, blends of OO with 2080% RPOO; non-CO, blends of OO with 2080% VOs (RPOO, HOSO, NTSO, DOSO, 50 

RAO or HR); CO, blends of OO with 2080% CO; non-HOSO, blends of OO with 2080% VOs (RPOO, CO, NTSO, DOSO, RAO or 51 

HR); HOSO, blends of OO with 2080% HOSO; non-NTSO, blends of OO with 2080% VOs (RPOO, CO, HOSO, DOSO, RAO or 52 

HR); NTSO, blends of OO with 2080% NTSO; non-DOSO, blends of OO with 2080% VOs (RPOO, CO, HOSO, NTSO, RAO or 53 

HR); DOSO, blends of OO with 2080% DOSO; non-RAO, blends of OO with 2080% VOs (RPOO, CO, HOSO, NTSO, DOSO or 54 

HR); RAO, blends of OO with 2080% RAO; non-HR, blends of OO with 2080% VOs (RPOO, CO, HOSO, NTSO, DOSO or RAO); 55 

HR, blends of OO with 2080% HR.  56 
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Table 4 57 

PLS-R models to determine the percentage of a certain vegetable oil in a binary mixture with olive 58 

oil.1 59 

PLS-R 

model Data2 n 

PLS-

comp R-cal R-val R2-val 

RMSEP 

(% VO) 

1 210% NTSO in VOO3 113 6 0.86 0.83 0.68 1.2 

2 1020% NTSO in VOO3 24 6 0.9995 0.9946 0.989 0.49 

3 2090% NTSO in VOO3 76 1 0.9990 0.9989 0.998 0.96 

4 220% HOSO in VOO3 100 7 0.75 0.71 0.50 3.4 

5 2080% HOSO in VOO4 21 5 0.998 0.994 0.987 1.9 

6 220% EVAO in VOO4 20 6 0.998 0.988 0.98 1.0 

7 2045% EVAO in VOO4 14 3 0.995 0.987 0.97 1.7 

8 4580% EVAO in VOO4 12 3 0.998 0.996 0.992 1.3 

9 1030% HV in VOO4 25 7 0.995 0.986 0.97 1.3 

10 3080% HV in VOO4 16 1 0.994 0.993 0.986 2.3 

11 210% HR in VOO3 84 3 0.58 0.55 0.30 2.8 

12 25% S in VOO3 86 9 0.87 0.78 0.61 0.95 

13 220% RPOO in OO4 20 4 0.9997 0.9993 0.9986 0.25 

14 2080% RPOO in OO3 25 1 0.9993 0.9992 0.998 0.80 

15 210% CO in OO4 12 1 0.997 0.996 0.992 0.32 

16 1080% CO in OO3 32 1 0.99992 0.99990 0.9998 0.32 

17 220% HOSO in OO4 10 2 0.994 0.983 0.97 1.0 

18 1080% HOSO in OO3 25 3 0.9994 0.9992 0.998 0.80 

19 220% NTSO in OO3 34 4 0.9989 0.9978 0.996 0.45 

20 2080% NTSO in OO3 54 1 0.997 0.994 0.989 1.4 

21 220% DOSO in OO4 19 6 0.998 0.994 0.987 0.78 

22 2080% DOSO in OO4 18 2 0.997 0.996 0.991 2.0 

23 210% RAO in OO4 11 5 0.997 0.963 0.93 0.76 

24 220% RAO in OO4 17 9 0.9994 0.9812 0.963 1.3 

25 2080% RAO in OO4 17 4 0.9991 0.9974 0.995 1.5 

26 220% HR in OO4 14 3 0.9988 0.9977 0.995 0.49 

27 2080% HR in OO3 21 3 0.9997 0.9995 0.9990 0.64 
 60 

1 Abbreviations: n, number of samples; centered data; PLS-comp, number of PLS components; R-cal, correlation coefficient in 61 

calibration; R-val, correlation coefficient in validation; R2-val, coefficient of determination in validation; RMSEP, root mean square error 62 

in the prediction (% VO). 63 

2 Samples used to build each model. 64 

3 3-fold cross-validation. 65 

4 Leave-one-out cross-validation.  66 
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Table 5 67 

PLS-DA models to discriminate between ‘legal’ and ‘illegal’ blends of olive oil and vegetable oils, 68 

‘legal’ blends of VOO or OO with NTSO and HOSO, VOO blends with 2% S and 5% S, VOO blends 69 

with 25% HR and 10% HR, OO blends with DOSO and HR, OO blends with RAO and HR, OO 70 

blends with RAO and DOSO, and OO blends of with DOSO and HOSO.1 71 

PLS-DA 

model Data 

PLS-

comp Boundary Class2,3,4,5 

Class 

code n p %R %P 

68 290% VOs in VOO  10 0.5290 ‘Illegal’ blend 0 302 0.44 78 77 

        ‘Legal’ blend 1 381 0.56 81 77 

69 290% NTSO in VOO  9 0.5543 NTSO 0 207 0.54 85 83 

  280% HOSO in VOO      HOSO 1 174 0.46 88 85 

70 280% VOs in OO  13 0.3960 ‘Illegal’ blend 0 199 0.61 99 98 

        ‘Legal’ blend 1 125 0.39 87 86 

71 280% NTSO in OO  5 0.3979 NTSO 0 88 0.70 98 97 

  280% HOSO in OO      HOSO 1 37 0.30 97 97 

72 25% S in VOO  9 0.4643 2% S  0 44 0.50 95 93 

        5% S  1 44 0.50 93 93 

73 210% HR in VOO  6 0.4429 25% HR 0 59 0.66 83 80 

        10% HR 1 30 0.34 80 77 

74 280% DOSO in OO  3 0.4805 DOSO 0 37 0.50 86 84 

  280% HR in OO      HR 1 37 0.50 97 95 

75 280% RAO in OO  3 0.5011 RAO 0 38 0.51 79 82 

  280% HR in OO      HR 1 37 0.49 86 84 

76 280% RAO in OO  6 0.4723 RAO 0 38 0.51 95 95 

  280% DOSO in OO      DOSO 1 37 0.49 100 97 

77 280% DOSO in OO  3 0.4280 DOSO 0 37 0.50 95 95 

  280% HOSO in OO      HOSO 1 37 0.50 100 100 
 72 

1 See abbreviations in Table 1. 73 

2 Samples contained in each class for PLS-DA models 6869: ‘Illegal’ blend, blends of VOO with 280% VOs (EVAO, HV, HR or S); 74 

‘Legal’ blend, blends of VOO with 2-90% VOs (NTSO or HOSO); NTSO, blends of VOO with 290% NTSO; HOSO, blends of VOO 75 

with 2-80% HOSO. 76 

3 Samples contained in each class for PLS-DA models 7071: ‘Illegal’ blends, blends of OO with 280% VOs (RPOO, CO, DOSO, 77 

RAO or HR); ‘Legal’ blends, blends of OO with 280% VOs (HOSO or NTSO); NTSO, blends of OO with 280% NTSO; HOSO, 78 

blends of OO with 280% HOSO. 79 

4 Samples contained in each class PLS-DA models 7273: 2% S in VOO, blends of VOO with 2% S; 5% S in VOO, blends of VOO with 80 

5% S; 25% HR in VOO, blends of VOO with 25% HR; 10% HR in VOO, blends of VOO with 10% HR. 81 

5 Samples contained in each class PLS-DA models 7477: DOSO, blends of OO with 280% DOSO; HR, blends of OO with 280% 82 

HR; RAO, blends of OO with 280% RAO; HOSO, blends of OO with 280% HOSO. 83 
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Figure S1. Decision tree constituted of PLS-DA classification and PLS-R regression models for a 

case-study: Discrimination between ‘legal’ (containing NTSO or HOSO) and ‘illegal’ 

(not containing NTSO or HOSO) blends, and determination of % NTSO or HOSO in 

binary mixtures with oils of the ‘virgin olive oil’ or ‘olive oil’ categories. 

Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; NTSO, refined 

conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic 

sunflower oil. 
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Table S1 

Chemical shift assignments of the 1H-NMR signals of the main components in olive oil. 

# Chemical shift 
(ppm) 

Multiplicitya Functional group Attribution 

1 0.318 d -CH2- (cyclopropanic ring) cycloartenol 
2 0.527 s -CH2- alcohol, sterol  
3 0.543 d -CH2- (cyclopropanic ring) cycloartenol 
4 0.669 s -CH3 (C18-steroid group) -sitosterol 
5 0.687 s -CH3 (C18-steroid group) stigmasterol 
6 0.740 t -CH3 (

13C satellite of signal at  
   0.87 ppm, acyl group)  
7 0.80-1.04 t -CH3 (acyl group)  
7a 0.83 t -CH3 (acyl group) saturated 
7b 0.866 t -CH3 (acyl group) oleic (or -9) 
7c 0.89 t -CH3 (acyl group) linoleic (or -6) 
7d 0.960 t -CH3 (acyl group) linolenic (or -3) 
8 0.987 t -CH3 (

13C satellite of signal at  
   0.87 ppm, acyl group)  
9 1.19-1.44  -(CH2)n- (acyl group)  
9a 1.243  -(CH2)n- (acyl group) saturated 
9b 1.256  -(CH2)n- (acyl group) oleic (or -9) 
9c 1.288  -(CH2)n- (acyl group) linoleic (or -6) and linolenic 

(or -3)  
10 1.51-1.65  -OCO-CH2-CH2- (acyl group)  
10a 1.57  -OCO-CH2-CH2- (acyl group) saturated 
10b 1.58  -OCO-CH2-CH2- (acyl group) oleic (or -9) 
10c 1.59  -OCO-CH2-CH2- (acyl group) linoleic (or -6) and linolenic 

(or -3) 
11 1.662 s -CH3 squalene 
12 1.96-2.07  -CH2-CH=CH- (acyl group)  
12a 1.97  -CH2-CH=CH- (acyl group) oleic (or -9) 
12b 2.01-2.03  -CH2-CH=CH- (acyl group) linoleic (or -6) and linolenic 

(or -3) 
12c 2.05-2.07  -CH2-CH=CH- (acyl group) linolenic (or -3) 
13 2.22-2.32 m -OCO-CH2- (acyl group)  
13a 2.24 m -OCO-CH2- (acyl group) saturated 
13b 2.25 m -OCO-CH2- (acyl group) oleic (or -9) 
13c 2.27 m -OCO-CH2- (acyl group) linoleic (or -6) 
13d 2.31 m -OCO-CH2- (acyl group) linolenic (or -3) 
14 2.40-2.45 m -OCO-CH2- (

13C satellite of signal at   
   2.26-2.32 ppm, acyl group)  
     
     
     
     

Supplementary Material - Tables Click here to access/download;Supplementary
Material;RMAS_Tables-Supplementary-material.pdf
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# Chemical shift 
(ppm) 

Multiplicitya Functional group Attribution 

15 2.72-2.82  =CH-CH2-CH= (acyl group)  
15a 2.754 t =CH-CH2-CH= (acyl group) linoleic (or -6) 
15b 2.789 t =CH-CH2-CH= (acyl group) linolenic (or -3) 
16 3.69-3.73 d -CH2OH (glyceryl group) sn-1,2-diacylglycerides 
17 4.05-4.09 q >CH-OH (glyceryl group) sn-1,3-diacylglycerides 
18 4.09-4.32  -CH2OCOR (glyceryl group) triacylglycerides 
19 4.571 d  terpene 
20 4.648 s  terpene 
21 4.699 s  terpene 
22 5.05-5.15 m >CHOCOR (glyceryl group) sn-1,2-diacylglycerides 
23 5.22-5.28 m >CHOCOR (glyceryl group) triacylglycerides 
24 5.28-5.38 m -CH=CH- (acyl group)  
25 5.52-5.43 m -CH=CH- (13C satellite of signal at  
   5.28-5.38 ppm, acyl group)  
26 5.72-5.76 dt =CH- (phenolic ring) phenolic compounds 
27 5.986  =CH- (phenolic ring) phenolic compounds 
28 6.551 dt =CH- (phenolic ring) phenolic compounds 
29 6.607 dd =CH- (C8’; phenolic ring) dialdehyde of oleuropein 

lacking a carboxymethyl group 
aldehydic form of oleuropein 

30 6.79-6.73 d =CH- (C5’, C7’; phenolic ring) dialdehyde of secoiridoids 
(oleuropein, ligstroside) lacking 
a carboxymethyl group 
aldehydic form of secoiridoid 
(oleuropein, ligstroside) 

31 7.05-7.00 dt =CH- (C4’, C8’; phenolic ring) dialdehyde of ligstroside 
lacking a carboxymethyl group 
aldehydic form of ligstroside 

32 7.562 s =CH-O- (C3) aldehydic form of secoiridoid 
(oleuropein, ligstroside) 

33 8.14-8.06  >C(OH)OR volatile compounds 
 

34 9.215 d -CHO (C1) dialdehyde of secoiridoids 
(oleuropein, ligstroside) lacking 
a carboxymethyl group 

35 9.51 d -CHO E-2-alkenals (E-2-hexenal) 
36 9.626 dd -CHO (C3) dialdehyde of secoiridoids 

(oleuropein, ligstroside) lacking 
a carboxymethyl group 

  dd -CHO (C1) aldehydic form of secoiridoids 
(oleuropein, ligstroside) 
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Table S2 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 220% 

vegetable oil in virgin olive oil.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

%P-
EV 

6 020% non-NTSO in VOO  12 0.3623 non-NTSO 0 238 0.64 86 85 79 

  220% NTSO in VOO      NTSO 1 132 0.36 90 86 - 

7 020% non-HOSO in VOO  14 0.4713 non-HOSO 0 245 0.62 83 79 82 

  220% HOSO in VOO      HOSO 1 152 0.38 83 79 - 

8 020% non-EVAO in VOO  6 0.3791 non-EVAO 0 81 0.80 94 93 97 

  220% EVAO in VOO      EVAO 1 20 0.20 90 90 - 

9 020% non-HV in VOO  6 0.3815 non-HV 0 137 0.68 78 75 73 

  220% HV in VOO      HV 1 65 0.32 82 75 - 

10 020% non-HR in VOO  5 0.4011 non-HR 0 195 0.68 77 75 58 

  220% HR in VOO      HR 1 90 0.32 78 76 - 

11 020% non-S in VOO  11 0.4248 non-S 0 208 0.70 98 96 95 

  220% S in VOO      S 1 90 0.30 97 96 - 

1 Abbreviations: n, number of samples; centered data; PLS-comp, number of PLS components; p, prior probability; %R, % of 

recognition ability; %P, % of prediction ability in cross-validation; %P-EV, % of prediction ability in external validation; VOO, 

virgin olive oil; VO, vegetable oil; NTSO, refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic 

sunflower oil; HR, refined hazelnut oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, virgin avocado oil. 

2 Samples contained in each class: non-NTSO, pure VOOs and blends of VOO with 220% VOs (HOSO, EVAO, HV, HR or S); 

NTSO, blends of VOO with 220% NTSO; non-HOSO, pure VOOs and blends of VOO with 220% VOs (NTSO, EVAO, HV, HR 

or S); HOSO, blends of VOO with 220% HOSO; non-EVAO, pure VOOs and blends of VOO with 220% VOs (NTSO, HOSO, 

HV, HR or S); EVAO, blends of VOO with 220% EVAO; non-HV, pure VOOs and blends of VOO with 220% VOs (NTSO, 

HOSO, EVAO, HR or S); HV, blends of VOO with 220% HV; non-HR, pure VOOs and blends of VOO with 220% VOs (NTSO, 

HOSO, EVAO, HV or S); HR, blends of VOO with 210% HR; non-S, pure VOOs and blends of VOO with 220% VOs (NTSO, 

HOSO, EVAO, HV or HR); S, blends of VOO with 25% S. 
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Table S3 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 520% 

vegetable oil in virgin olive oil.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

%P-
EV 

12 020% non-NTSO in VOO  11 0.3508 non-NTSO 0 238 0.73 96 95 92 

  520% NTSO in VOO      NTSO 1 87 0.27 94 90 - 

13 020% non-HOSO in VOO  17 0.4098 non-HOSO 0 245 0.71 87 85 85 

  520% HOSO in VOO      HOSO 1 102 0.29 90 86 - 

14 020% non-EVAO in VOO  10 0.3805 non-EVAO 0 80 0.84 94 93 97 

  520% EVAO in VOO      EVAO 1 15 0.16 100 93 - 

15 020% non-HV in VOO  10 0.3675 non-HV 0 137 0.75 85 82 81 

  520% HV in VOO      HV 1 45 0.25 80 78 - 

16 020% non-HR in VOO  14 0.3808 non-HR 0 195 0.76 85 79 72 

  520% HR in VOO      HR 1 60 0.24 85 85 - 

17 020% non-S in VOO  7 0.4156 non-S 0 208 0.82 98 98 97 

  520% S in VOO      S 1 45 0.18 98 98 - 

1 See abbreviations in Table S2. 

2 Samples contained in each class: non-NTSO, pure VOOs and blends of VOO with 220% VOs (HOSO, EVAO, HV, HR or S); 

NTSO, blends of VOO with 520% NTSO; non-HOSO, pure VOOs and blends of VOO with 220% VOs (NTSO, EVAO, HV, HR 

or S); HOSO, blends of VOO with 520% HOSO; non-EVAO, pure VOOs and blends of VOO with 220% VOs (NTSO, HOSO, 

HV, HR or S); EVAO, blends of VOO with 520% EVAO; non-HV, pure VOOs and blends of VOO with 220% VOs (NTSO, 

HOSO, EVAO, HR or S); HV, blends of VOO with 520%HV; non-HR, pure VOOs and blends of VOO with 220% VOs (NTSO, 

HOSO, EVAO, HV or S); HR, blends of VOO with 510% HR; non-S, pure VOOs and blends of VOO with 220% VOs (NTSO, 

HOSO, EVAO, HV or HR); S, blends of VOO with 5% S. 
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Table S4 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 280% 

vegetable oil in olive oil.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

30 080% VOs in OO  2 0.1815 non-RPOO 0 315 0.88 100 100 

        RPOO 1 41 0.12 95 95 

31 080% VOs in OO  7 0.3545 non-CO 0 310 0.87 96 95 

        CO 1 46 0.13 100 100 

32 080% VOs in OO  7 0.3662 non-HOSO 0 319 0.90 98 97 

        HOSO 1 37 0.10 95 95 

33 080% VOs in OO  12 0.2809 non-NTSO 0 268 0.75 98 97 

        NTSO 1 88 0.25 85 85 

34 080% VOs in OO  5 0.1652 non-DOSO 0 319 0.90 91 91 

        DOSO 1 37 0.10 84 84 

35 080% VOs in OO  11 0.2354 non-RAO 0 318 0.89 96 92 

        RAO 1 38 0.11 95 87 

36 080% VOs in OO  15 0.2270 non-HR 0 319 0.90 93 89 

        HR 1 37 0.10 100 97 

1 Abbreviations: See abbreviations in Table S2; OO, olive oil; DOSO, desterolized and deodorized high oleic sunflower oil; 

RAO, refined avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 

2 Samples contained in each class: non-RPOO, pure OOs and blends of OO with 280% VOs (CO, HOSO, NTSO, DOSO, 

RAO or HR); RPOO, blends of OO with 280% RPOO; non-CO, pure OOs and blends of OO with 280% VOs (RPOO, 

HOSO, NTSO, DOSO, RAO or HR); CO, blends of OO with 280% CO; non-HOSO, pure OOs and blends of OO with 

280% VOs (RPOO, CO, NTSO, DOSO, RAO or HR); HOSO, blends of OO with 280% HOSO; non-NTSO, pure OOs 

and blends of OO with 280% VOs (RPOO, CO, HOSO, DOSO, RAO or HR); NTSO, blends of OO with 280% NTSO; 

non-DOSO, pure OOs and blends of OO with 280% VOs (RPOO, CO, HOSO, NTSO, RAO or HR); DOSO, blends of OO 

with 280% DOSO; non-RAO, pure OOs and blends of OO with 280% VOs (RPOO, CO, HOSO, NTSO, DOSO or HR); 

RAO, blends of OO with 280% RAO; non-HR, pure OOs and blends of OO with 280% VOs (RPOO, CO, HOSO, NTSO, 

DOSO or RAO); HR, blends of OO with 280% HR. 
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Table S5 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 220% 

vegetable oil in olive oil.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

37 020% VOs in OO  2 0.2399 non-RPOO 0 162 0.89 98 98 

        RPOO 1 21 0.11 95 95 

38 020% VOs in OO  12 0.3522 non-CO 0 164 0.89 97 95 

        CO 1 20 0.11 100 100 

39 020% VOs in OO  4 0.3039 non-HOSO 0 172 0.93 96 96 

        HOSO 1 12 0.07 100 100 

40 020% VOs in OO  11 0.2770 non-NTSO 0 143 0.79 93 90 

        NTSO 1 38 0.21 97 89 

41 020% VOs in OO  8 0.1904 non-DOSO 0 164 0.89 88 89 

        DOSO 1 20 0.11 95 90 

42 020% VOs in OO  7 0.2110 non-RAO 0 163 0.89 82 80 

        RAO 1 21 0.11 90 81 

43 020% VOs in OO  14 0.2809 non-HR 0 162 0.90 94 90 

        HR 1 19 0.10 95 95 

1 See abbreviations in Table S2 and S4. 

2 Samples contained in each class: non-RPOO, pure OOs and blends of OO with 220% VOs (CO, HOSO, NTSO, DOSO, 

RAO or HR); RPOO, blends of OO with 220% RPOO; non-CO, pure OOs and blends of OO with 220% VOs (RPOO, 

HOSO, NTSO, DOSO, RAO or HR); CO, blends of OO with 220% CO; non-HOSO, pure OOs and blends of OO with 

220% VOs (RPOO, CO, NTSO, DOSO, RAO or HR); HOSO, blends of OO with 220% HOSO; non-NTSO, pure OOs 

and blends of OO with 220% VOs (RPOO, CO, HOSO, DOSO, RAO or HR); NTSO, blends of OO with 220% NTSO; 

non-DOSO, pure OOs and blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, RAO or HR); DOSO, blends of OO 

with 220% DOSO; non-RAO, pure OOs and blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, DOSO or HR); 

RAO, blends of OO with 220% RAO; non-HR, pure OOs and blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, 

DOSO or RAO); HR, blends of OO with 220% HR. 
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Table S6 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 220% 

vegetable oil in olive oil, once the presence of RPOO or CO is discarded.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

51 220% VOs in OO  2 0.3689 non-HOSO 0 98 0.89 98 97 

  without RPOO and CO data     HOSO 1 12 0.11 100 100 

52 220% VOs in OO  7 0.3706 non-NTSO 0 72 0.65 100 99 

  without RPOO and CO data     NTSO 1 38 0.35 95 92 

53 220% VOs in OO  8 0.2569 non-DOSO 0 89 0.82 91 85 

  without RPOO and CO data     DOSO 1 20 0.18 100 95 

54 220% VOs in OO  10 0.3905 non-RAO 0 87 0.81 91 87 

  without RPOO and CO data     RAO 1 20 0.19 100 95 

55 220% VOs in OO  15 0.3948 non-HR 0 89 0.82 97 92 

  without RPOO and CO data     HR 1 19 0.18 100 95 

1 See abbreviations in Table S2 and S4. 

2 Samples contained in each class: non-HOSO, blends of OO with 220% VOs (NTSO, DOSO, RAO or HR); HOSO, blends 

of OO with 220% HOSO; non-NTSO, blends of OO with 220% VOs (HOSO, DOSO, RAO or HR); NTSO, blends of OO 

with 220% NTSO; non-DOSO, blends of OO with 220% VOs (HOSO, NTSO, RAO or HR); DOSO, blends of OO with 

220% DOSO; non-RAO, blends of OO with 220% VOs (HOSO, NTSO, DOSO or HR); RAO, blends of OO with 220% 

RAO; non-HR, blends of OO with 220% VOs (HOSO, NTSO, DOSO or RAO); HR, blends of OO with 220% HR. 
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Table S7 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 

2080% vegetable oil in olive oil, once the presence of RPOO or CO is discarded.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

63 2080% VOs in OO  3 0.4447 non-HOSO 0 125 0.82 100 100 

  without RPOO and CO data     HOSO 1 27 0.18 100 100 

64 2080% VOs in OO  3 0.4443 non-NTSO 0 95 0.62 100 100 

  without RPOO and CO data     NTSO 1 59 0.38 100 100 

65 20-80% VOs in OO  4 0.2963 non-DOSO 0 131 0.87 99 99 

  without RPOO and CO data     DOSO 1 20 0.13 100 100 

66 2080% VOs in OO  2 0.3560 non-RAO 0 131 0.85 92 92 

  without RPOO and CO data     RAO 1 23 0.15 100 100 

67 2080% VOs in OO  8 0.2858 non-HR 0 132 0.86 97 95 

  without RPOO and CO data     HR 1 22 0.14 91 91 

1 See abbreviations in Table S2 and S4. 

2 Samples contained in each class: non-HOSO, blends of OO with 2080% VOs (NTSO, DOSO, RAO or HR); HOSO, 

blends of OO with 2080% HOSO; non-NTSO, blends of OO with 2080% VOs (HOSO, DOSO, RAO or HR); NTSO, 

blends of OO with 2080% NTSO; non-DOSO, blends of OO with 2080% VOs (HOSO, NTSO, RAO or HR); DOSO, 

blends of OO with 2080% DOSO; non-RAO, blends of OO with 2080% VOs (HOSO, NTSO, DOSO or HR); RAO, 

blends of OO with 2080% RAO; non-HR, blends of OO with 2080% VOs (HOSO, NTSO, DOSO or RAO); HR, blends 

of OO with 2080% HR. 
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Table S8 

The most influential variables on the PLS-DA models to discriminate between ‘legal’ and 

‘illegal’ blends of olive oil and vegetable oils, ‘legal’ blends of VOO or OO with NTSO and 

HOSO, VOO blends with 2% S and 5% S, VOO blends with 25% HR and 10% HR, OO 

blends with DOSO and HR, OO blends with RAO and HR, OO blends with RAO and DOSO, 

and OO blends of with DOSO and HOSO.1 

PLS-DA 
model Data Class2,3,4,5 

Most discriminant variables: 
1H-NMR signal intensity is higher in the 

corresponding class 

68 
290% VOs in VOO  ‘Illegal’ blend Linolenic acid (#15b, #7d) 

    ‘Legal’ blend Linoleic (#7c, #15a), unsaturated (#24) fatty acids  

69 290% NTSO in VOO  NTSO Linolenic (#13d, #12c), linoleic (#7c), unsaturated 
(#9 at 1.321.36 ppm) fatty acids 

  280% HOSO in VOO  HOSO Oleic (#13b, #7b, #12a), unsaturated (#24 at 
5.325.34 ppm) fatty acids 

70 280% VOs in OO  ‘Illegal’ blend Linolenic (#15b, #7d), oleic (#12a and #7b) acids 

    ‘Legal’ blend Linoleic (#7c, #15a, #13c), unsaturated (#24) fatty 
acids, β-sitosterol (#4) and terpenic alcohols or sterols 
(#2) 

71 280% NTSO in OO  NTSO Linolenic (#13d, #12c), linoleic (#7c), unsaturated (#9 
at 1.321.36 ppm, #24 at 5.305.32 ppm) fatty acids 

  280% HOSO in OO  HOSO Oleic (#13b, #7b, #12a, #9b), unsaturated (#24 at 
5.325.34 ppm) fatty acids, triacylglycerides (#18) 

72 25% S in VOO  2% S  Oleic acid (#13b, #7b) 

    5% S  Linolenic acid (#15b, #7d) 

73 210% HR in VOO  25% HR Linolenic acid (#10c, #12c, #15b), squalene (#11) 

    10% HR Linoleic acid (#7c) 

74 280% DOSO in OO  DOSO Oleic (#12a, #9b), saturated (#9a) fatty acids 

  280% HR in OO  HR Linoleic acid (#12b, #15a, #7c, #9c) 

75 280% RAO in OO  RAO Saturated fatty acids (#9a) 

  280% HR in OO  HR Oleic (#9b, #7b, #12a), linoleic (#9c) acids 

76 280% RAO in OO  RAO Linoleic acid (#7c, #12b), squalene (#11) 

  280% DOSO in OO  DOSO Oleic (#12a, #9b, #7b), linolenic (#9c, #10c) acids 

77 280% DOSO in OO  DOSO Oleic (#12a, #9b), unsaturated (#24 at 5.355.38 
ppm) fatty acids 

  280% HOSO in OO  HOSO Linoleic (#12b, #7c), unsaturated (#24 at 5.325.34 
ppm) fatty acids 

1 See abbreviations in Table S2 and S4, and the 1H-signal assignments in Table S1. 

2 Samples contained in each class for PLS-DA models 6869: ‘Illegal’ blend, blends of VOO with 280% VOs (EVAO, HV, 

HR or S); ‘Legal’ blend, blends of VOO with 2-90% VOs (NTSO or HOSO); NTSO, blends of VOO with 290% NTSO; 

HOSO, blends of VOO with 2-80% HOSO. 

3 Samples contained in each class for PLS-DA models 7071: ‘Illegal’ blends, blends of OO with 280% VOs (RPOO, CO, 

DOSO, RAO or HR); ‘Legal’ blends, blends of OO with 280% VOs (HOSO or NTSO); NTSO, blends of OO with 280% 

NTSO; HOSO, blends of OO with 280% HOSO. 

4 Samples contained in each class PLS-DA models 7273: 2% S in VOO, blends of VOO with 2% S; 5% S in VOO, blends 

of VOO with 5% S; 25% HR in VOO, blends of VOO with 25% HR; 10% HR in VOO, blends of VOO with 10% HR. 

5 Samples contained in each class PLS-DA models 7477: DOSO, blends of OO with 280% DOSO; HR, blends of OO with 

280% HR; RAO, blends of OO with 280% RAO; HOSO, blends of OO with 280% HOSO. 
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Table S9 

Prediction of the composition of blind oil samples using the classification and regressions models in the decision trees and the complementary PLS-DA 

models.1,2,3 

PLS-DA PLS-R   

Blind 
sample Models applied Predictions 

Predicting 
model Blend % VO Description 

1   1, 2, 25-28, 68, 69 ‘Legal’ NTSO in VOO   3 NTSO-VOO 39.6 ± 1.9   EVOO + NTSO, 60:40 

2   1, 2, 25-28, 68, 69 ‘Legal’ NTSO in VOO   3 NTSO-VOO 50.8 ± 1.9   EVOO + NTSO, 50:50 

3   1, 2, 25-28, 68, 69 ‘Legal’ NTSO in VOO   3 NTSO-VOO 61.4 ± 1.9   EVOO + NTSO, 40:60 

4   1, 2, 25-28, 68, 69 ‘Legal’ HOSO in VOO   5 HOSO-VOO 40.0 ± 3.9   EVOO + HOSO, 60:40 

5   1, 2, 25-28, 68, 69 ‘Legal’ HOSO in VOO   5 HOSO-VOO 50.1 ± 3.9   EVOO + HOSO, 50:50 

6   1, 2, 25-28, 68, 69 ‘Legal’ HOSO in VOO   5 HOSO-VOO 60.3 ± 3.9   EVOO + HOSO, 40:60 

7   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ NTSO in OO   20 NTSO-OO 41.7 ± 2.8   OO + NTSO, 60:40 

8   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ NTSO in OO   20 NTSO-OO 51.2 ± 2.8   OO + NTSO, 50:50 

9   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ NTSO in OO   20 NTSO-OO 62.1 ± 2.8   OO + NTSO, 40:60 

10   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ HOSO in OO   18 HOSO-OO 39.9 ± 1.6   OO + HOSO, 60:40 

11   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ HOSO in OO   18 HOSO-OO 49.9 ± 1.6   OO + HOSO, 50:50 

12   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ HOSO in OO   18 HOSO-OO 60.3 ± 1.6   OO + HOSO, 40:60 

13  1, 2, 3-24, 68, 69 VOO; low; non-VO; ‘illegal’  6 EVAO-VOO 6.5 ± 2.1  EVOO + EVAO, 95:5 

     4 HOSO-VOO 3.9 ± 6.8   

    73 2-5% HR in VOO   11 HR-VOO 3.9 ± 5.6     

14   1, 2, 3-24, 68, 69 VOO; low; EVAO; ‘illegal’   6 EVAO-VOO 12.9 ± 2.1   EVOO + EVAO, 90:10 

15   1, 2, 3-24, 68, 69 VOO; low; EVAO; ‘illegal’   6 EVAO-VOO 23.9 ± 2.1   EVOO + EVAO, 80:20 

16   1, 2, 25-28, 68, 69 VOO; high; EVAO; ‘illegal’   7 EVAO-VOO 42.6 ± 3.4   EVOO + EVAO, 70:30 

17   1, 2, 3-24, 68, 69 VOO; low; HV; ‘illegal’   9 HV-VOO 9.5 ± 2.6   EVOO + HV, 95:5 

18   1, 2, 3-24, 68, 69 VOO; low; HV; ‘illegal’   9 HV-VOO 10.9 ± 2.6   EVOO + HV, 90:10 

19   1, 2, 3-24, 68, 69 VOO; low; HV; ‘illegal’   9 HV-VOO 26.0 ± 2.6   EVOO + HV, 80:20 

20   1, 2, 25-28, 68, 69 VOO; high; HV; ‘illegal’   9 HV-VOO 27.4 ± 2.6   EVOO + HV, 70:30 
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PLS-DA PLS-R   

Blind 
sample Models applied Predictions 

Predicting 
model Blend % VO Description 

21   1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’   21 DOSO-OO 1.4 ± 1.6   OO + RAO, 95:5 

    76 RAO in OO   23 RAO-OO 0.0 ± 1.5     

22  1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’  21 DOSO-OO 4.4 ± 1.6  OO + RAO, 90:10 

    76 DOSO in OO   23 RAO-OO 9.0 ± 1.5     

23   1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’   21 DOSO-OO 13.2 ± 1.6   OO + RAO, 80:20 

    76 RAO in OO  24 RAO-OO 22.3 ± 2.7     

24   1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’   21 DOSO-OO 19.2 ± 1.6   OO + RAO, 70:30 

  76 RAO in OO  24 RAO-OO 22.6 ± 2.7   

25   1, 30-36, 29, 37-55, 70, 71 OO; low; RAO; ‘illegal’   24 RAO-OO 12.7 ± 2.7   OO + HR, 95:5 

26   1, 30-36, 29, 37-67, 70, 71 OO; low; HR, RAO; ‘illegal’   25 RAO-OO 36.2 ± 3.1   OO + HR, 90:10 

    75 HR in OO   26 HR-OO 6.4 ± 1.0     

27   1, 30-36, 29, 37-55, 70, 71 OO; low; HR; ‘illegal’   26 HR-OO 15.0 ± 1.0   OO + HR, 80:20 

          27 HR-OO 20.3 ± 1.3     

28   1, 30-36, 29, 37-55, 70, 71 OO; low; HR; ‘illegal’   27 HR-OO 28.3 ± 1.3   OO + HR, 70:30 

29   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO, RAO, DOSO; ‘illegal’   13 RPOO-OO 5.2 ± 0.5   OO + RPOO, 95:5 

30   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO, RAO, DOSO; ‘illegal’   13 RPOO-OO 10.1 ± 0.5   OO + RPOO, 90:10 

31   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO; ‘illegal’   13 RPOO-OO 19.8 ± 0.5   OO + RPOO, 80:20 

          14 RPOO-OO 20.4 ± 1.6     

32   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO; ‘illegal’   14 RPOO-OO 30.7 ± 1.6   OO + RPOO, 70:30 

33   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO; ‘illegal’   21 DOSO-OO 4.8 ± 1.6   OO + DOSO, 95:5 

34   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO/HOSO; legal-HOSO   17 HOSO-OO 2.0 ± 2.1   OO + DOSO, 90:10 

  77 HOSO in OO  18 HOSO-OO 11.2 ± 1.6   

          21 DOSO-OO 12.4 ± 1.6     

35   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO; ‘illegal’   21 DOSO-OO 21.0 ± 1.6   OO + DOSO, 80:20 

          22 DOSO-OO 20.1 ± 4.0     

36   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO/HR; ‘illegal’   22 DOSO-OO 35.1 ± 4.0   OO + DOSO, 70:30 

    74 DOSO in OO   27 HR-OO 29.4 ± 1.3     
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PLS-DA PLS-R 

Blind 
sample Models applied Predictions 

Predicting 
model Blend % VO Description 

37 1, 2, 25-28, 68, 69 VOO; high; NTSO; legal-NTSO 3 NTSO-VOO 99.4* ± 1.9 Label: 65% NTSO + 
35% EVOO4 

38 1, 2, 25-28, 68, 69 VOO; high; NTSO; legal-NTSO 3 NTSO-VOO 104.9* ± 1.9 Label: Vegetable oil + 
VOO4 

39 1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR; ‘illegal’ 16 CO-OO 56.4 ± 0.6 Label: Rapeseed oil + 

75 HR in OO 27 HR-OO 107.3* ± 1.3 EVOO4,5

40 1, 30-36, 29, 56-67, 70, 71 OO; high; NTSO; legal-NTSO 20 NTSO-OO 93.2* ± 2.8 Label: 80% Rapeseed 

oil + 20% VOO4,5 

41 1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR; ‘illegal’ 16 CO-OO 52.0 ± 0.6 Label: 75% Rapeseed 

75 HR in OO 27 HR-OO 106.9* ± 1.3 oil + 25% EVOO4,5 

42 1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR; ‘illegal’ 16 CO-OO 41.6 ± 0.6 Label: 75% Rapeseed 

75 HR in OO 27 HR-OO 95.5* ± 1.3 oil + 25% EVOO4,5 

43 1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR, DOSO; ‘illegal’ 16 CO-OO 51.2 ± 0.6 Label: 80% Rapeseed 

75 HR in OO 27 HR-OO 106.9* ± 1.3 oil + 20% EVOO4,5 

44 1, 30-36, 29, 56-67, 70, 71 OO; high; NTSO; legal-NTSO 20 NTSO-OO 93.3* ± 2.8 
Label: 80% Vegetable 
oil + 20% VOO4 

1 See abbreviations in Table S2 and S4. 

2 Decision trees in Figures 1 and S1. 

3 Complementary PLS-DA models: PLS-DA models 7277 in Table 5. 

4 The label did not comply with the Reg. (EU) 29/2012 and its amendments, since the commercial blend did not contain at least 50% of olive oil, and therefore, the presence of olive oil on the label is 

forbidden. 

5 From the predictions achieved, it could be infer that samples (39, 4143) did not contain NTSO or HOSO, and presented close composition to pure HR or blends of 50% CO in OO. Sample 40 was 

identified by all classification models as a NTSO-OO blend. 

* Extrapolated results (outside the calibration range of the regression model).
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