191 research outputs found

    Evidence against AMPA receptor-lacking glutamatergic synapses in the superficial dorsal horn of the rat spinal cord

    Get PDF
    Pure NMDA receptor (NMDAr)-mediated EPSCs, thought to correspond to "silent" glutamatergic synapses that lack AMPA receptors (AMPArs), have been observed in superficial spinal dorsal horn of neonatal but not adult rats. Recent anatomical studies suggest that AMPArs are present at virtually all glutamatergic synapses in this region in adults. We used antigen retrieval to examine colocalization of AMPArs and PSD-95 (a marker for glutamatergic synapses) in laminae I–II of neonatal and adult rats. We found a high degree of colocalization in all cases, which suggests that AMPArs are present in the great majority of glutamatergic synapses even in neonatal animals. We therefore reexamined evidence for silent synapses by performing blind whole-cell recordings from superficial dorsal horn neurons in slices from neonatal or adult rats, with focal stimulation to activate glutamatergic synapses. On some occasions in both neonatal (10 of 109, 9%) and adult (9 of 77, 12%) slices, NMDAr-mediated EPSCs were observed when the holding potential was raised to +50 mV at a stimulus strength that had failed to evoke AMPAr-mediated EPSCs. However, in all cases tested, AMPAr-mediated EPSCs were then observed when the cell was returned to –70 mV; this and other properties of the EPSCs suggest that they do not represent genuine silent synapses. When compared with previous findings, our results indicate that the appearance of silent synapses depends on experimental protocol. This suggests that pure NMDAr-mediated EPSCs seen in previous studies do not correspond to AMPAr-lacking synapses but result from another mechanism, for example, loss of labile AMPArs from recently formed synapses

    ENVIRONMENTAL ACCOUNTING IN AGRICULTURE: NUTRIENT ACCOUNTING AND OTHER ASPECTS

    Get PDF
    While traditional accounting focuses on accounting for capital assets, costs, yields valued and sold in the market, environmental accounting intends to do the same with non-marketed capital assets, costs and yields, that is, externalities. The farm level nutrient balances are based on an input-output comparison, in which the nutrients entering the farm within inputs are compared to nutrients leaving the farm within the sold products. The method considers the amounts of nutrients entering the farm but not leaving it with the products to be wastes polluting the environment. The weakness of this approach is the handling of stock changes. In a farming year high amounts of nutrients contained in unsold products are not wastes, nor are they stored in the soil, but are stored in the stocks. To handle this problem the concepts of external nutrient balance and internal nutrient balance are introduced, and are tested in case studies of two Hungarian mixed farms

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia

    Changes of potentially anti-nutritive components in Hungarian potatoes from organic and conventional farming

    Get PDF
    Anti-nutritive components in multi resistant potato cultivars were investigated in relation to conventional and organic farming for three years. Glycoalkaloids, nitrate, nitrite, asparagine, and glutamine contents of tubers were examined. Farming technology was found not to have an effect on the level of glycoalkaloids, which was influenced mostly by the genotype and season. Nitrogen fertilisation caused significant increase in nitrate, asparagine, and glutamine contents as compared to organic farming. Nitrite content was found to be more independent of farming technologies than nitrate. Tubers of cultivar Rioja had the lowest nitrate content irrespective of season or technology. In conclusion, the absolute amount and changes of different anti-nutritive components of potato tubers were influenced differently by the technology, genotype, and season in a complex manner. Organic farming had no effect on the glycoalkaloid content, but the nitrate levels had a tendency to be lower compared to conventional farming. This can be seen as a positive effect of organic farming

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    MĂĄjĂĄttĂ©tes betegek sztereotaxiĂĄs ablatĂ­v sugĂĄrkezelĂ©sĂ©vel (SABRT) elĂ©rt elsƑ eredmĂ©nyeink

    Get PDF
    Recently the prevalence of oligometastatic patients is increasing. A common site of distant spread is the liver. The standard of care is curative surgical resection, however, the resecability rate is only 10-20%. Alternatively, radiofrequency ablation (RFA) or transarterial chemoembolization (TACE) may be used. Stereotactic ablative body radiotherapy (SABRT) makes it possible to deliver curative radiation dose without radiation injury to the healthy liver tissue. We delivered SABRT to three patients with inoperable hepatic metastases. The primary tumors were rectal (2) and lung (1). The dose was 3x20 Gy every other day. We observed one grade 1 side effect. All the metastases showed complete remission and no local recurrence or late side effect occurred during the one year of follow-up. One patient is tumor-free, one has stable disease, in one patient two new hepatic metastases appeared and receives chemo-biological therapy. SABRT of liver metastases is safe and highly effective. It can be expected that in the near future it will become one of the standard treatments of hepatic tumors
    • 

    corecore