79 research outputs found

    Transmission dynamics of the ongoing chikungunya outbreak in Central Italy. From coastal areas to the metropolitan city of Rome, summer 2017

    Get PDF
    A large chikungunya outbreak is ongoing in Italy, with a main cluster in the Anzio coastal municipality. With preliminary epidemiological data, and a transmission model using mosquito abundance and biting rates, we estimated the basic reproduction number R0 at 2.07 (95% credible interval: 1.47–2.59) and the first case importation between 21 May and 18 June 2017. Outbreak risk was higher in coastal/rural sites than urban ones. Novel transmission foci could occur up to mid-November

    Malformazione Artero-Venosa renale trattata mediante embolizzazione arteriosa con Squid Peri.

    Get PDF
    Embolizzazione dell’apporto arterioso mediante approccio endovascolare per il trattamento della MAV renal

    A quantitative assessment of epidemiological parameters required to investigate COVID-19 burden

    Get PDF
    Solid estimates describing the clinical course of SARS-CoV-2 infections are still lacking due to under-ascertainment of asymptomatic and mild-disease cases. In this work, we quantify age-specific probabilities of transitions between stages defining the natural history of SARS-CoV-2 infection from 1965 SARS-CoV-2 positive individuals identified in Italy between March and April 2020 among contacts of confirmed cases. Infected contacts of cases were confirmed via RT-PCR tests as part of contact tracing activities or retrospectively via IgG serological tests and followed-up for symptoms and clinical outcomes. In addition, we provide estimates of time intervals between key events defining the clinical progression of cases as obtained from a larger sample, consisting of 95,371 infections ascertained between February and July 2020. We found that being older than 60 years of age was associated with a 39.9% (95%CI: 36.2–43.6%) likelihood of developing respiratory symptoms or fever ≥ 37.5 °C after SARS-CoV-2 infection; the 22.3% (95%CI: 19.3–25.6%) of the infections in this age group required hospital care and the 1% (95%CI: 0.4–2.1%) were admitted to an intensive care unit (ICU). The corresponding proportions in individuals younger than 60 years were estimated at 27.9% (95%CI: 25.4–30.4%), 8.8% (95%CI: 7.3–10.5%) and 0.4% (95%CI: 0.1–0.9%), respectively. The infection fatality ratio (IFR) ranged from 0.2% (95%CI: 0.0–0.6%) in individuals younger than 60 years to 12.3% (95%CI: 6.9–19.7%) for those aged 80 years or more; the case fatality ratio (CFR) in these two age classes was 0.6% (95%CI: 0.1–2%) and 19.2% (95%CI: 10.9–30.1%), respectively. The median length of stay in hospital was 10 (IQR: 3–21) days; the length of stay in ICU was 11 (IQR: 6–19) days. The obtained estimates provide insights into the epidemiology of COVID-19 and could be instrumental to refine mathematical modeling work supporting public health decisions

    Estimating SARS-CoV-2 transmission in educational settings: a retrospective cohort study

    Get PDF
    Background School closures and distance learning have been extensively adopted to counter the COVID-19 pandemic. However, the contribution of school transmission to the spread of SARS-CoV-2 remains poorly quantified. Methods We analyzed transmission patterns associated with 976 SARS-CoV-2 exposure events, involving 460 positive individuals, as identified in early 2021 through routine surveillance and an extensive screening conducted on students, school personnel, and their household members in a small Italian municipality. In addition to population screenings and contact-tracing operations, reactive closures of class and schools were implemented. Results From the analysis of 152 clear infection episodes and 584 exposure events identified by epidemiological investigations, we estimated that approximately 50%, 21%, and 29% of SARS-CoV-2 transmission was associated with household, school, and community contacts, respectively. We found substantial transmission heterogeneities, with 20% positive individuals causing 75% to 80% of ascertained infection episodes. A higher proportion of infected individuals causing onward transmission was found among students (46.2% vs. 25%, on average), who also caused a markedly higher number of secondary cases (mean: 1.03 vs. 0.35). By reconstructing likely transmission chains from the entire set of exposures identified during contact-tracing operations, we found that clusters originated from students or school personnel were associated with a larger average cluster size (3.32 vs. 1.15) and a larger average number of generations in the transmission chain (1.56 vs. 1.17). Conclusions Uncontrolled SARS-CoV-2 transmission at school could disrupt the regular conduct of teaching activities, likely seeding the transmission into other settings, and increasing the burden on contact-tracing operations

    Estimating SARS-CoV-2 transmission in educational settings: a retrospective cohort study

    Get PDF
    Background School closures and distance learning have been extensively adopted to counter the COVID-19 pandemic. However, the contribution of school transmission to the spread of SARS-CoV-2 remains poorly quantified. Methods We analyzed transmission patterns associated with 976 SARS-CoV-2 exposure events, involving 460 positive individuals, as identified in early 2021 through routine surveillance and an extensive screening conducted on students, school personnel, and their household members in a small Italian municipality. In addition to population screenings and contact-tracing operations, reactive closures of class and schools were implemented. Results From the analysis of 152 clear infection episodes and 584 exposure events identified by epidemiological investigations, we estimated that approximately 50%, 21%, and 29% of SARS-CoV-2 transmission was associated with household, school, and community contacts, respectively. We found substantial transmission heterogeneities, with 20% positive individuals causing 75% to 80% of ascertained infection episodes. A higher proportion of infected individuals causing onward transmission was found among students (46.2% vs. 25%, on average), who also caused a markedly higher number of secondary cases (mean: 1.03 vs. 0.35). By reconstructing likely transmission chains from the entire set of exposures identified during contact-tracing operations, we found that clusters originated from students or school personnel were associated with a larger average cluster size (3.32 vs. 1.15) and a larger average number of generations in the transmission chain (1.56 vs. 1.17). Conclusions Uncontrolled SARS-CoV-2 transmission at school could disrupt the regular conduct of teaching activities, likely seeding the transmission into other settings, and increasing the burden on contact-tracing operations

    Co-circulation of SARS-CoV-2 Alpha and Gamma variants in Italy, February and March 2021

    Get PDF
    : BackgroundSeveral SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.MethodsWe conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.ResultsThe Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.ConclusionWe assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility

    Increasing situational awareness through nowcasting of the reproduction number

    Full text link
    The time varying reproduction number R is a critical variable for situational awareness during infectious disease outbreaks, but delays between infection and reporting hinder its accurate estimation in real time. We propose a nowcasting method for improving the timeliness and accuracy of R estimates, based on comparisons of successive versions of surveillance databases. The method was validated against COVID-19 surveillance data collected in Italy over an 18-month period. Compared to traditional methods, the nowcasted reproduction number reduced the estimation delay from 13 to 8 days, while maintaining a better accuracy. Moreover, it allowed anticipating the detection of periods of epidemic growth by between 6 and 23 days. The method offers a simple and generally applicable tool to improve situational awareness during an epidemic outbreak, allowing for informed public health response planning

    Intrinsic generation time of the SARS-CoV-2 Omicron variant: an observational study of household transmission

    Get PDF
    Background Starting from the final months of 2021, the SARS-CoV-2 Omicron variant expanded globally, swiftly replacing Delta, the variant that was dominant at the time. Many uncertainties remain about the epidemiology of Omicron; here, we aim to estimate its generation time.Methods We used a Bayesian approach to analyze 23,122 SARS-CoV-2 infected individuals clustered in 8903 households as determined from contact tracing operations in Reggio Emilia, Italy, throughout January 2022. We estimated the distribution of the intrinsic generation time (the time between the infection dates of an infector and its secondary cases in a fully susceptible population), realized household generation time, realized serial interval (time between symptom onset of an infector and its secondary cases), and contribution of pre-symptomatic transmission.Findings We estimated a mean intrinsic generation time of 6.84 days (95% credible intervals, CrI, 5.72-8.60), and a mean realized household generation time of 3.59 days (95%CrI: 3.55-3.60). The household serial interval was 2.38 days (95%CrI 2.30-2.47) with about 51% (95%CrI 45-56%) of infections caused by symptomatic individuals being generated before symptom onset.Interpretation These results indicate that the intrinsic generation time of the SARS-CoV-2 Omicron variant might not have shortened as compared to previous estimates on ancestral lineages, Alpha and Delta, in the same geographic setting. Like for previous lineages, pre-symptomatic transmission appears to play a key role for Omicron transmission. Estimates in this study may be useful to design quarantine, isolation and contact tracing protocols and to support surveillance (e.g., for the accurate computation of reproduction numbers).Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/

    Estimation of the incubation period and generation time of SARS-CoV-2 Alpha and Delta variants from contact tracing data

    Get PDF
    : Quantitative information on epidemiological quantities such as the incubation period and generation time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is scarce. We analysed a dataset collected during contact tracing activities in the province of Reggio Emilia, Italy, throughout 2021. We determined the distributions of the incubation period for the Alpha and Delta variants using information on negative polymerase chain reaction tests and the date of last exposure from 282 symptomatic cases. We estimated the distributions of the intrinsic generation time using a Bayesian inference approach applied to 9724 SARS-CoV-2 cases clustered in 3545 households where at least one secondary case was recorded. We estimated a mean incubation period of 4.9 days (95% credible intervals, CrI, 4.4-5.4) for Alpha and 4.5 days (95% CrI 4.0-5.0) for Delta. The intrinsic generation time was estimated to have a mean of 7.12 days (95% CrI 6.27-8.44) for Alpha and of 6.52 days (95% CrI 5.54-8.43) for Delta. The household serial interval was 2.43 days (95% CrI 2.29-2.58) for Alpha and 2.74 days (95% CrI 2.62-2.88) for Delta, and the estimated proportion of pre-symptomatic transmission was 48-51% for both variants. These results indicate limited differences in the incubation period and intrinsic generation time of SARS-CoV-2 variants Alpha and Delta compared to ancestral lineages
    • …
    corecore