1,968 research outputs found

    Constraints on filament models deduced from dynamical analysis

    Get PDF
    The conclusions deduced from simultaneous observations with the Ultra-Violet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission satellite, and the Multichannel Subtractive Double Pass (MSPD) spectrographs at Meudon and Pic du Midi observatories are presented. The observations were obtained in 1980 and 1984. All instruments have almost the same field of view and provide intensity and velocity maps at two temperatures. The resolution is approx. 0.5 to 1.5" for H alpha line and 3" for C IV. The high resolution and simultaneity of the two types of observations allows a more accurate description of the flows in prominences as functions of temperature and position. The results put some contraints on the models and show that dynamical aspects must be taken into account

    Higgs Boson Decays to Neutralinos in Low-Scale Gauge Mediation

    Full text link
    We study the decays of a standard model-like MSSM Higgs boson to pairs of neutralinos, each of which subsequently decays promptly to a photon and a gravitino. Such decays can arise in supersymmetric scenarios where supersymmetry breaking is mediated to us by gauge interactions with a relatively light gauge messenger sector (M_{mess} < 100 TeV). This process gives rise to a collider signal consisting of a pair of photons and missing energy. In the present work we investigate the bounds on this scenario within the minimal supersymmetric standard model from existing collider data. We also study the prospects for discovering the Higgs boson through this decay mode with upcoming data from the Tevatron and the LHC.Comment: 18 pages, 5 figures, added references and discussion of neutralino couplings, same as journal versio

    Exons, introns and DNA thermodynamics

    Full text link
    The genes of eukaryotes are characterized by protein coding fragments, the exons, interrupted by introns, i.e. stretches of DNA which do not carry any useful information for the protein synthesis. We have analyzed the melting behavior of randomly selected human cDNA sequences obtained from the genomic DNA by removing all introns. A clear correspondence is observed between exons and melting domains. This finding may provide new insights in the physical mechanisms underlying the evolution of genes.Comment: 4 pages, 8 figures - Final version as published. See also Phys. Rev. Focus 15, story 1

    The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation

    Get PDF
    Several mechanisms have been proposed for the positive health effects associated with dietary consumption of long-chain n-3 PUFA (n-3 LC-PUFA) including DHA (22 : 6n-3) and EPA (20 : 5n-3). After dietary intake, LC-PUFA are incorporated into membranes and can be converted to their corresponding N-acylethanolamines (NAE). However, little is known on the biological role of these metabolites. In the present study, we tested a series of unsaturated NAE on the lipopolysaccharide (LPS)-induced NO production in RAW264.7 macrophages. Among the compounds tested, docosahexaenoylethanolamine (DHEA), the ethanolamide of DHA, was found to be the most potent inhibitor, inducing a dose-dependent inhibition of NO release. Immune-modulating properties of DHEA were further studied in the same cell line, demonstrating that DHEA significantly suppressed the production of monocyte chemotactic protein-1 (MCP-1), a cytokine playing a pivotal role in chronic inflammation. In LPS-stimulated mouse peritoneal macrophages, DHEA also reduced MCP-1 and NO production. Furthermore, inhibition was also found to take place at a transcriptional level, as gene expression of MCP-1 and inducible NO synthase was inhibited by DHEA. To summarise, in the present study, we showed that DHEA, a DHA-derived NAE metabolite, modulates inflammation by reducing MCP-1 and NO production and expression. These results provide new leads in molecular mechanisms by which DHA can modulate inflammatory processes

    Comment on "Why is the DNA denaturation transition first order?"

    Get PDF
    In this comment we argue that while the conclusions in the original paper (Y. Kafri, D. Mukamel and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000)) are correct for asymptotically long DNA chains, they do not apply to the chains used in typical experiments. In the added last paragraph, we point out that for real DNA the average distance between denatured loops is not of the order of the persistence length of a single-stranded chain but much larger. This corroborates our reasoning that the double helix between loops is quite rigid, and thereby our conclusion.Comment: 1 page, REVTeX. Last paragraph adde

    Stability domains of actin genes and genomic evolution

    Full text link
    In eukaryotic genes the protein coding sequence is split into several fragments, the exons, separated by non-coding DNA stretches, the introns. Prokaryotes do not have introns in their genome. We report the calculations of stability domains of actin genes for various organisms in the animal, plant and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e. before introns insertion. Common stability boundaries are found in evolutionary distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general boundaries correspond with introns positions of vertebrates and other animals actins, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae and animals have introns in positions separated by one nucleotide only, which identifies a hot-spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamic driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for introns insertion in plants and animals.Comment: 9 Pages, 7 figures. Phys. Rev. E in pres

    Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation

    Full text link
    Statistical DNA models available in the literature are often effective models where the base-pair state only (unbroken or broken) is considered. Because of a decrease by a factor of 30 of the effective bending rigidity of a sequence of broken bonds, or bubble, compared to the double stranded state, the inclusion of the molecular conformational degrees of freedom in a more general mesoscopic model is needed. In this paper we do so by presenting a 1D Ising model, which describes the internal base pair states, coupled to a discrete worm like chain model describing the chain configurations [J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. Lett. 99, 088103 (2007)]. This coupled model is exactly solved using a transfer matrix technique that presents an analogy with the path integral treatment of a quantum two-state diatomic molecule. When the chain fluctuations are integrated out, the denaturation transition temperature and width emerge naturally as an explicit function of the model parameters of a well defined Hamiltonian, revealing that the transition is driven by the difference in bending (entropy dominated) free energy between bubble and double-stranded segments. The calculated melting curve (fraction of open base pairs) is in good agreement with the experimental melting profile of polydA-polydT. The predicted variation of the mean-square-radius as a function of temperature leads to a coherent novel explanation for the experimentally observed thermal viscosity transition. Finally, the influence of the DNA strand length is studied in detail, underlining the importance of finite size effects, even for DNA made of several thousand base pairs.Comment: Latex, 28 pages pdf, 9 figure

    Why is the DNA Denaturation Transition First Order?

    Full text link
    We study a model for the denaturation transition of DNA in which the molecules are considered as composed of a sequence of alternating bound segments and denaturated loops. We take into account the excluded-volume interactions between denaturated loops and the rest of the chain by exploiting recent results on scaling properties of polymer networks of arbitrary topology. The phase transition is found to be first order in d=2 dimensions and above, in agreement with experiments and at variance with previous theoretical results, in which only excluded-volume interactions within denaturated loops were taken into account. Our results agree with recent numerical simulations.Comment: Revised version. To appear in Phys. Rev. Let

    Resistance to Gray Leaf Spot of Maize: Genetic Architecture and Mechanisms Elucidated through Nested Association Mapping and Near-Isogenic Line Analysis

    Get PDF
    Citation: Benson, J. M., Poland, J. A., Benson, B. M., Stromberg, E. L., & Nelson, R. J. (2015). Resistance to Gray Leaf Spot of Maize: Genetic Architecture and Mechanisms Elucidated through Nested Association Mapping and Near-Isogenic Line Analysis. Plos Genetics, 11(3), 23. https://doi.org/10.1371/journal.pgen.1005045Gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR) loci. Nested association mapping (NAM) was used to identify 16 quantitative trait loci (QTL) for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs) were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis) and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO) gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will facilitate the development of resistant varieties

    Denaturation of Heterogeneous DNA

    Full text link
    The effect of heterogeneous sequence composition on the denaturation of double stranded DNA is investigated. The resulting pair-binding energy variation is found to have a negligible effect on the critical properties of the smooth second order melting transition in the simplest (Peyrard-Bishop) model. However, sequence heterogeneity is dramatically amplified upon adopting a more realistic treatment of the backbone stiffness. The model yields features of ``multi-step melting'' similar to those observed in experiments.Comment: 4 pages, LaTeX, text and figures also available at http://matisse.ucsd.edu/~hw
    • …
    corecore