643 research outputs found

    PMH29 Cost Effectiveness of Quetiapine Extended Release Compared With Quetiapine Immediate Release in Schizophrenic Patients in Mexico

    Get PDF

    New properties of a bioinspired pyridine benzimidazole compound as a novel differential staining agent for endoplasmic reticulum and Golgi apparatus in fluorescence live cell imaging

    Get PDF
    Indexación: Scopus.In this study, we explored new properties of the bioinspired pyridine benzimidazole compound B2 (2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol) regarding its potential use as a differential biomarker. For that, we performed 1D 1HNMR (TOCSY), UV-Vis absorption spectra in different organic solvents, voltammetry profile (including a scan-rate study), and TD-DFT calculations that including NBO analyses, to provide valuable information about B2 structure and luminescence. In our study, we found that the B2 structure is highly stable, where the presence of an intramolecular hydrogen bond (IHB) seems to have a crucial role in the stability of luminescence, and its emission can be assigned as fluorescence. In fact, we found that the relatively large Stokes Shift observed for B2 (around 175 nm) may be attributed to the stability of the B2 geometry and the strength of its IHB. On the other hand, we determined that B2 is biocompatible by cytotoxicity experiments in HeLa cells, an epithelial cell line. Furthermore, in cellular assays we found that B2 could be internalized by passive diffusion in absence of artificial permeabilization at short incubation times (15 min to 30 min). Fluorescence microscopy studies confirmed that B2 accumulates in the endoplasmic reticulum (ER) and Golgi apparatus, two organelles involved in the secretory pathway. Finally, we determined that B2 exhibited no noticeable blinking or bleaching after 1 h of continuous exposure. Thus, B2 provides a biocompatible, rapid, simple, and efficient way to fluorescently label particular organelles, producing similar results to that obtained with other well-established but more complex methods. © 2018 Llancalahuen, Fuentes, Carreño, Zúñiga, Páez-Hernández, Gacitúa, Polanco, Preite, Arratia-Pérez and Otero.https://www.frontiersin.org/articles/10.3389/fchem.2018.00345/ful

    Analysis of colorectal cancers in British Bangladeshi identifies early onset, frequent mucinous histotype and a high prevalence of RBFOX1 deletion

    Get PDF
    PMCID: PMC3544714This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Legacies of past forest management determine current responses to severe drought events of conifer species in the Romanian Carpathians

    Get PDF
    Worldwide increases in droughts- and heat-waves-associated tree mortality events are destabilizing the future of many forests and the ecosystem services they provide. Along with climate, understanding the impact of the legacies of past forest management is key to better explain current responses of different tree species to climate change. We studied tree mortality events that peaked in 2012 affecting one native (silver fir; growing within its natural distribution range) and two introduced (black pine and Scots; growing outside their natural distribution range) conifer species from the Romanian Carpathians. The three conifers were compared in terms of mortality events, growth trends, growth resilience to severe drought events, climate-growth relationships, and regeneration patterns. The mortality rates of the three species were found to be associated with severe drought events. Nevertheless, the native silver fir seems to undergo a self-thinning process, while the future of the remaining living black pine and Scots pine trees is uncertain as they register significant negative growth trends. Overall, the native silver fir showed a higher resilience to severe drought events than the two introduced pine species. Furthermore, and unlike the native silver fir, black pine and Scots pine species do not successfully regenerate. A high diversity of native broadleaf species sprouts and develops instead under them suggesting that we might be witnessing a process of ecological succession, with broadleaves recovering their habitats. As native species seem to perform better in terms of resilience and regeneration than introduced species, the overall effect of the black pine and Scots pine mortality might be compensated. Legacies of past forest management should be taken into account in order to better understand current responses of different tree species to ongoing climate change. © 2020 Elsevier B.V.We thank the Forest District staff of Sacele, Kronstadt, Rasnov, Teliu, Codlea, and Intorsura Buzaului for all their support and for giving us access to the Forest Management Plans. This work was financed by the NATIvE ( PN-III-P1-1.1-PD-2016-0583 ) and TreeMoris ( PN-II-RU-TE-2014-4-0791 ) projects through UEFISCDI (link; Romanian Ministry of Education and Research ) and supported by the BERC 2018-2021 ( Basque Government ), and BC3 María de Maeztu Excellence Accreditation 2018-2022, Ref. MDM-2017-0714 ( Spanish Ministry of Science, Innovation and Universities ). We also thank Antonio Gazol for interesting discussions on the study and Ionela-Mirela Medrea, Andrei Apafaian, Maria Băluţ, and Florin Dinulică for assistance during field and laboratory campaigns. Silver fir, black pine, and Scots pine figures included in the graphical abstract are reproduced with the authorization of the designer Luiza Anamaria Pop (©2020) who drew the three conifer species and processed the drawings in Adobe Illustrator® CS5 (v. 15.0.0)
    • …
    corecore