11 research outputs found
Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions.
In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events
Recommended from our members
Precipitation regime change in Western North America: The role of Atmospheric Rivers.
Daily precipitation in California has been projected to become less frequent even as precipitation extremes intensify, leading to uncertainty in the overall response to climate warming. Precipitation extremes are historically associated with Atmospheric Rivers (ARs). Sixteen global climate models are evaluated for realism in modeled historical AR behavior and contribution of the resulting daily precipitation to annual total precipitation over Western North America. The five most realistic models display consistent changes in future AR behavior, constraining the spread of the full ensemble. They, moreover, project increasing year-to-year variability of total annual precipitation, particularly over California, where change in total annual precipitation is not projected with confidence. Focusing on three representative river basins along the West Coast, we show that, while the decrease in precipitation frequency is mostly due to non-AR events, the increase in heavy and extreme precipitation is almost entirely due to ARs. This research demonstrates that examining meteorological causes of precipitation regime change can lead to better and more nuanced understanding of climate projections. It highlights the critical role of future changes in ARs to Western water resources, especially over California
Trend Analysis of Total Column Ozone over New Delhi, India
Total Column Ozone measurements from Total Ozone Mapping Spectrometer (TOMS) onboard satellite Nimbus 7, Meteor 3 and Earth Probe have been used to determine trends in column ozone over New Delhi. Long term trend obtained with ozone time series data and least square fitting without removing Seasonal cycle, QBO, Solar effect and ENSO, shows that ozone concentration is decreasing by 2.11 (+/- 1.04) % per decade over New Delhi. Therefore, to calculate the exact trend, multifunctional regression model have been used to remove the effect ofseasonal cycle, solar cycle, QBO and ENSO. The obtained long term trend with multifunctional regression model shows that column ozone over Delhi is actually decreasing by 1.83 (+/- 1.02) % per decade. The trend obtained from ozone time series data with least square fit overestimates multifunctional regression model by about 15%. The objective of this paper is to present the result of a long term trend analysis of the TOMS total ozone data over New Delh
Ilmastonmuutos pÀÀkaupunkiseudulla
Ihmiskunnan toiminnasta aiheutuneet kasvihuonekaasupÀÀstöt ovat lĂ€mmittĂ€neet maapallon ilmastoa jo yli asteen. MerkittĂ€viĂ€ muutoksia on havaittu mm. helleaaltojen ja rankkasateiden voimakkuudessa. Tulevaisuuden ilmastonmuutos riippuu ihmiskunnan pÀÀstöjen kehityksestĂ€, mutta on varsin todennĂ€köistĂ€, ettĂ€ maapallon keskilĂ€mpötila nousee tĂ€llĂ€ vuosisadalla vielĂ€ noin 1â2 astetta lisÀÀ.
KÀynnissÀ oleva ilmaston lÀmpeneminen nÀkyy jo pÀÀkaupunkiseudun ilmastossa. Monet havaitut muutokset ovat sopusoinnussa sen kanssa, mitÀ ihmiskunnan aiheuttama kasvihuoneilmiön voimistuminen tuo mukanaan. Viimeksi kuluneiden 60 vuoden aikana keskilÀmpötilat ovat nousseet kaikkina vuodenaikoina, mutta voimakkainta nousu on ollut talvella. Myös sademÀÀrÀt ovat nousseet talvikaudella, mutta muina vuodenaikoina sateissa ei ole havaittavissa tilastollisesti merkitseviÀ trendejÀ. KeskimÀÀrÀisten ilmasto-olosuhteiden lisÀksi sÀÀn ÀÀri-ilmiöistÀ helleaallot ovat voimistuneet, ja helteiden lisÀÀntyminen on ollut voimakkaampaa pÀÀkaupunkiseudun sisÀmaassa kuin rannikolla.
TĂ€hĂ€n raporttiin on myös pĂ€ivitetty tuoreimmat ilmastonmuutosarviot perustuen IPCC:n kuudennessa arviointiraportissa kĂ€ytettyihin CMIP6-ilmastomalleihin ja SSP-kasvihuonekaasuskenaarioihin. Keskinkertaisen SSP2-4.5 pÀÀstöskenaarion mukaan eri kuukausien keskilĂ€mpötilojen ennustetaan nousevan pÀÀkaupunkiseudulla 2,5â3 astetta vuosista 1981â2010 vuosiin 2040â2069 mennessĂ€. Nousu on hieman pienempÀÀ kuin Suomen alueella keskimÀÀrin, ja muutokset ovat talvella jonkun verran suurempia kuin kesĂ€llĂ€. Leudontuva talvi-ilmasto tarkoittaa lumen ja jÀÀpeitteen vĂ€hentymistĂ€ entisestÀÀn. KesĂ€aikaan nouseva lĂ€mpötila tuo mukaan voimakkaampia helteitĂ€, rankkasateita ja kuivuusjaksoja. Tuulisuudessa ei nĂ€y selkeitĂ€ muutossignaaleja, eikĂ€ siten talvimyrskyjen ennusteta olevan tulevaisuudessa selkeĂ€sti nykyistĂ€ voimakkaampia. Sen sijaan talvisten matalapaineiden mukanaan tuomat sademÀÀrĂ€t lisÀÀntyvĂ€t ja satavat yhĂ€ useammin vetenĂ€. Meriveden ei ennusteta vielĂ€ vuosisadan puolivĂ€liin mennessĂ€ juurikaan nousevan, mutta vuosisadan loppuun mennessĂ€ sen ennustetaan olevan noin 25 cm nykyistĂ€ tasoa korkeammalla.
Kaikista optimistisimmankin pÀÀstöskenaarion mukaan pÀÀkaupunkiseudun ilmasto lĂ€mpenisi yli asteen lisÀÀ 2080-lukuun mennessĂ€. Tulevien sukupolvien kokema vuosisadan loppupuolen ilmasto riippuu suuresti ihmiskunnan pÀÀstöistĂ€, ja jonkinasteiseen muutokseen on oltava valmiita varautumaan. Toisaalta pitÀÀ tiedostaa, ettĂ€ pÀÀkaupunkiseudun ilmasto on luonnostaan hyvin vaihteleva, ja siksi tulevaisuudessa voi esiintyĂ€ kylmiĂ€kin ajanjaksoja.VĂ€xthusgasutslĂ€pp orsakade av mĂ€nsklig verksamhet har redan vĂ€rmt upp jordens klimat med mer Ă€n en grad. Betydande förĂ€ndringar har observerats till exempel i intensiteten av vĂ€rmeböljor och kraftiga regn. Framtida klimatförĂ€ndringar beror pĂ„Ì mĂ€nniskans utslĂ€pp av vĂ€xthusgaser, men det Ă€r ganska sannolikt att jordens medeltemperatur kommer att stiga med ytterligare 1â2 grader under detta Ă„rhundrade.
Den pĂ„gĂ„ende uppvĂ€rmningen Ă€r redan synlig i huvudstadsregionens klimat. MĂ„nga av de observerade förĂ€ndringarna stĂ€mmer överens med vad mĂ€nniskans förorsakade intensifiering av vĂ€xthuseffekten medför. Under de senaste 60 Ă„ren har medeltemperaturen stigit under alla Ă„rstider, men uppvĂ€rmningen har varit kraftigast under vintern. Nederbörden har aÌven ökat under vintersĂ€songen, men inga statistiskt sĂ€kerstĂ€llda förĂ€ndringar kan observeras i nederbörden under de andra Ă„rstiderna. Utöver de genomsnittliga klimatförhĂ„llandena har vĂ€rmeböljorna intensifierats och vaÌrmeoÌkningen har varit kraftigare i inlandet aÌn vid kusten i huvudstadsregionen.
Denna rapport har ocksĂ„ uppdaterats med de senaste uppskattningarna av klimatförĂ€ndringarna, vilka Ă€r baserade pĂ„Ì CMIP6 klimatmodeller och SSP vaÌxthusgasscenarier som anvĂ€nds i IPCC:s sjĂ€tte utvaÌrderingsrapport. Enligt det genomsnittliga utslaÌppsscenariot SSP2-4.5 förutspĂ„s medeltemperaturen för olika mĂ„nader att stiga i huvudstadsregionen med 2,5â3 grader frĂ„n Ă„ren 1981â2010 till 2040â2069. Ăkningen Ă€r nĂ„got mindre aÌn medeltalet i Finland och förĂ€ndringarna Ă€r nĂ„got större pĂ„Ì vintern aÌn under sommaren. Ett mildare vinterklimat innebĂ€r en ytterligare minskning av snoÌ- och istĂ€cket. Den stigande temperaturen pĂ„ sommaren ger starkare vĂ€rmeböljor, kraftiga regn och perioder med torka. Det finns inga tydliga tecken i förĂ€ndringar i vindförhĂ„llanden, och dĂ€rför förutspĂ„s att vinterstormar inte blir starkare i framtiden aÌn vad de Ă€r nu. IstaÌllet oÌkar nederbördsmĂ€ngderna i samband med vinterlĂ„gtryck och nederbörden förekommer oftare i form av regn. HavsnivĂ„n förutspĂ„s inte stiga mycket före mitten av seklet, men i slutet av Ă„rhundradet kan havsnivĂ„n stiga med cirka 25 cm frĂ„n nuvarande nivĂ„Ì .
Enligt det mest optimistiska utslaÌppsscenariot skulle klimatet i huvudstadsregionen vĂ€rmas upp med mer aÌn en grad tills 2080-talet. Klimatet som de kommande generationerna kommer att uppleva i slutet av seklet Ă€r alltsĂ„Ì starkt beroende av mĂ€nniskans utslĂ€pp, och man mĂ„ste vara redo att förbereda sig till en viss grad av förĂ€ndring. DĂ€remot mĂ„ste man vara medveten om att klimatet i huvudstadsregionen har naturligt stor variation och dĂ€rför kan kalla perioder ocksĂ„ förekomma i framtiden.Greenhouse gas emissions caused by human activity have already warmed the climate of Earth by more than one degree. Significant changes have been observed e.g. in the intensity of heatwaves and heavy rainfall. Future climate change depends on human emissions, but it is likely that the global mean temperature still rises by another 1â2 degrees by the end of this century.
The ongoing global warming is already visible in the climate of the capital region. Many of the observed changes are consistent with what human-caused intensification of the greenhouse effect will bring. During the past 60 years, the average temperatures have risen in all seasons, but the strongest warming has been observed in winter. Precipitation has increased in the winter season, but no statistically significant trends in precipitation can be observed in other seasons. In addition to the average climatic conditions, heatwaves have intensified with a stronger increase in the inland regions than on the coast.
In this report, the latest climate change projections based on CMIP6 climate models and SSP greenhouse gas scenarios used in the IPCC's Sixth Assessment Report are presented. According to the moderate SSP2-4.5 emission scenario, the average temperatures are predicted to rise in the capital region by 2.5â3 degrees in all months from the period 1981â2010 by the period 2040â2069. The warming is slightly weaker than in Finland on average, and the changes are somewhat larger in winter than in summer. A milder winter climate results in a further decrease in snow and ice cover. The rising temperatures in summer bring stronger heatwaves, heavy rainfalls and prolonged periods of droughts. There are no clear signs of change in the windiness, and thus winter storms are not predicted to be notably stronger in the future than they are now. Instead, the amount of precipitation induced by winter cyclones increases and comes more often as rain than snow. The sea level is not projected to rise much by the mid-century, but by the end of the century it is estimated to rise by about 25 cm from its current level.
Even according to the most optimistic emission scenario, the climate in the capital region would warm by more than one degree by the 2080s. The climate change by the end of the century experienced by future generations is highly dependent on human emissions, and one must be ready to prepare for some degree of change. On the other hand, the climate in the capital region is subject to significant natural variability, and therefore cold periods of weather may occur also in the future
Impact of COVID-19 induced lockdown on land surface temperature, aerosol, and urban heat in Europe and North America
The outbreak of SARS CoV-2 (COVID-19) has posed a serious threat to human beings, society, and economic activities all over the world. Worldwide rigorous containment measures for limiting the spread of the virus have several beneficial environmental implications due to decreased anthropogenic emissions and air pollutants, which provide a unique opportunity to understand and quantify the human impact on atmospheric environment. In the present study, the associated changes in Land Surface Temperature (LST), aerosol, and atmospheric water vapor content were investigated over highly COVID-19 impacted areas, namely, Europe and North America. The key findings revealed a large-scale negative standardized LST anomaly during nighttime across Europe (-0.11 °C to -2.6 °C), USA (-0.70 °C) and Canada (-0.27 °C) in March-May of the pandemic year 2020 compared to the mean of 2015-2019, which can be partly ascribed to the lockdown effect. The reduced LST was corroborated with the negative anomaly of air temperature measured at meteorological stations (i.e. -0.46 °C to -0.96 °C). A larger decrease in nighttime LST was also seen in urban areas (by âŒ1-2 °C) compared to rural landscapes, which suggests a weakness of the urban heat island effect during the lockdown period due to large decrease in absorbing aerosols and air pollutants. On the contrary, daytime LST increased over most parts of Europe due to less attenuation of solar radiation by atmospheric aerosols. Synoptic meteorological variability and several surface-related factors may mask these changes and significantly affect the variations in LST, aerosols and water vapor content. The changes in LST may be a temporary phenomenon during the lockdown but provides an excellent opportunity to investigate the effects of various forcing controlling factors in urban microclimate and a strong evidence base for potential environmental benefits through urban planning and policy implementation
Ilmasto- ja sosioekonomiset skenaariot ilmastonmuutokseen sopeutumisen suunnittelussa
Ilmastonmuutoksen vaikutukset eri toimialoilla ovat usein seurausta usean meteorologisen tekijÀn ja niiden muuttumisen yhteisvaikutuksesta yhdistettynÀ haavoittuvuuteen ja altistumiseen. Raportissa kuvataan skenaarioita valittujen meteorologisten tekijöiden yhdistelmistÀ, ja kehys, joka integroi ilmasto- ja sosioekonomisia skenaarioita Suomessa.
Tulevaisuuden muutoksia termisessÀ kasvukaudessa ja kuivuusriskissÀ tutkittiin erittÀin korkean resoluution ilmastomallilla ja kuivuusindeksillÀ (VPD), joka yhdistÀÀ ilman lÀmpötilaa ja kosteutta. Vuosisadan loppuun mennessÀ kasvukausi pitenee, mutta kuivuuden lisÀÀntyminen rajoittaa saatavia hyötyjÀ kaikkialla Suomessa.
Maailmanlaajuisten CMIP6-ilmastomallien avulla tutkittiin talvisin kertyvÀÀ pakkassummaa ja vesisateiden yleistymistÀ keskitalvella yhdistÀmÀllÀ lÀmpötila- ja sademÀÀrÀskenaarioita. Pakkassummat vÀhenevÀt absoluuttisesti eniten Lapissa, mutta suhteellisesti eniten EtelÀ- ja LÀnsi-Suomessa. KeskimÀÀrÀisen pÀÀstöskenaarion mukaan HelsingissÀ yli 60 % ja RovaniemellÀ 20 % talvisateista tulisi vuosisadan lopussa vetenÀ.
Kansalliset sosioekonomiset kehityspolut, jotka perustuvat maailmanlaajuisiin sosioÂekonomisiin kehityspolkuihin (SSP), ovat saatavilla maa- ja elintarvikealalle sekĂ€ sosiaali- ja terveysalalle. Maakunnallisten, jĂ€rjestelmĂ€tason SSP-pohjaisten skenaarioiden ja narratiivien yhteiskehittĂ€minen on alkuvaiheessa.Julkaisun sisĂ€llöstĂ€ vastaavat kirjoittajat, eikĂ€ tekstisisĂ€ltö vĂ€lttĂ€mĂ€ttĂ€ edusta maa- ja metsĂ€talousministeriön nĂ€kemystĂ€
Quality Management Framework for Climate Datasets
Data from a variety of research programmes are increasingly used by policy makers, researchers, and private sectors to make data-driven decisions related to climate change and variability. Climate services are emerging as the link to narrow the gap between climate science and downstream users. The Global Framework for Climate Services (GFCS) of the World Meteorological Organization (WMO) offers an umbrella for the development of climate services and has identified the quality assessment, along with its use in user guidance, as a key aspect of the service provision. This offers an extra stimulus for discussing what type of quality information to focus on and how to present it to downstream users. Quality has become an important keyword for those working on data in both the private and public sectors and significant resources are now devoted to quality management of processes and products. Quality management guarantees reliability and usability of the product served, it is a key element to build trust between consumers and suppliers. Untrustworthy data could lead to a negative economic impact at best and a safety hazard at worst. In a progressive commitment to establish this relation of trust, as well as providing sufficient guidance for users, the Copernicus Climate Change Service (C3S) has made significant investments in the development of an Evaluation and Quality Control (EQC) function. This function offers a homogeneous user-driven service for the quality of the C3S Climate Data Store (CDS). Here we focus on the EQC component targeting the assessment of the CDS datasets, which include satellite and in-situ observations, reanalysis, climate projections, and seasonal forecasts. The EQC function is characterised by a two-tier review system designed to guarantee the quality of the dataset information. While the need of assessing the quality of climate data is well recognised, the methodologies, the metrics, the evaluation framework, and how to present all this information to the users have never been developed before in an operational service, encompassing all the main climate dataset categories. Building the underlying technical solutions poses unprecedented challenges and makes the C3S EQC approach unique. This paper describes the development and the implementation of the operational EQC function providing an overarching quality management service for the whole CDS data