27 research outputs found
Fatty Acid Elongation in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma
Non-alcoholic steatohepatitis (NASH) represents a risk factor for the development of hepatocellular carcinoma (HCC) and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice). Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD)-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h) increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of
NASH-related liver disease
Drug-Drug Interaction Analysis of Pyronaridine/Artesunate and Ritonavir in Healthy Volunteers
A multiple dose, parallel group study was conducted to assess for a drug-drug interaction between the pyronaridine/artesunate (PA) combination antimalarial and ritonavir. Thirty-four healthy adults were randomized (1:1) to receive PA for 3 days or PA with ritonavir (100 mg twice daily for 17 days, PA administered on Days 8–10). Pharmacokinetic parameters for pyronaridine, artesunate, and its active metabolite dihydroartemisinin (DHA) were obtained after the last PA dose and for ritonavir on Days 1 and 10. Ritonavir coadministration did not markedly change pyronaridine pharmacokinetics but resulted in a 27% increase in artesunate area under the curve (AUC) and a 38% decrease in DHA AUC. Ritonavir exposure was increased 3.2-fold in the presence of PA. The only relevant safety observations were increases in liver enzymes, only reaching a clinically significant grade in the PA + ritonavir arm. It was concluded that coadministered ritonavir and PA interact to alter exposure to artesunate, DHA, and ritonavir itself
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes. This 15-fold increase in genus-level sampling relative to comparable nuclear studies provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
Automated Detection of External Ventricular and Lumbar Drain-Related Meningitis Using Laboratory and Microbiology Results and Medication Data
OBJECTIVE: Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse. METHODS: As part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability. RESULTS: 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk). The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with observed infection rates. CONCLUSION: A prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify rates of DRM. Automated detection using this statistical approach is feasible and could be applied to other nosocomial infections
Pharmacokinetics and safety profile of the human anti-Pseudomonas aeruginosa serotype O11 immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers
KBPA-101 is a human monoclonal antibody of the immunoglobulin M isotype, which is directed against the O-polysaccharide moiety of Pseudomonas aeruginosa serotype O11. This double-blind, dose escalation study evaluated the safety and pharmacokinetics of KBPA-101 in 32 healthy volunteers aged 19 to 46 years. Each subject received a single intravenous infusion of KBPA-101 at a dose of 0.1, 0.4, 1.2, or 4 mg/kg of body weight or placebo infused over 2 h. Plasma samples for pharmacokinetic assessments were taken before infusion as well as 0.25, 0.5, 1, 2, 2.5, 4, 6, 8, 12, 24, 36, and 48 h and 4, 7, 10, and 14 days after start of dosing. Plasma concentrations of KBPA-101 were detected with mean maximum concentrations of drug in plasma of 1,877, 7,571, 24,923, and 83,197 ng/ml following doses of 0.1, 0.4, 1.2, and 4.0 mg/kg body weight, respectively. The mean elimination half-life was between 70 and 95 h. The mean volume of distribution was between 4.76 and 5.47 liters. Clearance ranged between 0.039 and 0.120 liters/h. At the highest dose of 4.0 mg/kg, plasma KBPA-101 levels were greater than 5,000 ng/ml for 14 days. KBPA-101 exhibited linear kinetics across all doses. No anti-KBPA-101 antibodies were detected after dosing in any subject. Overall, the human monoclonal antibody KBPA-101 was well tolerated over the entire dose range in healthy volunteers, and no serious adverse events have been reported
Metabolism and disposition of imatinib mesylate in healthy volunteers.
Imatinib mesylate (GLEEVEC, GLIVEC, formerly STI571) has demonstrated unprecedented efficacy as first-line therapy for treatment for all phases of chronic myelogenous leukemia and metastatic and unresectable malignant gastrointestinal stromal tumors. Disposition and biotransformation of imatinib were studied in four male healthy volunteers after a single oral dose of 239 mg of (14)C-labeled imatinib mesylate. Biological fluids were analyzed for total radioactivity, imatinib, and its main metabolite CGP74588. Metabolite patterns were determined by radio-high-performance liquid chromatography with off-line microplate solid scintillation counting and characterized by liquid chromatography-mass spectrometry. Imatinib treatment was well tolerated without serious adverse events. Absorption was rapid (t(max) 1-2 h) and complete with imatinib as the major radioactive compound in plasma. Maximum plasma concentrations were 0.921 +/- 0.095 mug/ml (mean +/- S.D., n = 4) for imatinib and 0.115 +/- 0.026 mug/ml for the pharmacologically active N-desmethyl metabolite (CGP74588). Mean plasma terminal elimination half-lives were 13.5 +/- 0.9 h for imatinib, 20.6 +/- 1.7 h for CGP74588, and 57.3 +/- 12.5 h for (14)C radioactivity. Imatinib was predominantly cleared through oxidative metabolism. Approximately 65 and 9% of total systemic exposure [AUC(0-24 h) (area under the concentration time curve) of radioactivity] corresponded to imatinib and CGP74588, respectively. The remaining proportion corresponded mainly to oxidized derivatives of imatinib and CGP74588. Imatinib and its metabolites were excreted predominantly via the biliary-fecal route. Excretion of radioactivity was slow with a mean radiocarbon recovery of 80% within 7 days (67% in feces, 13% in urine). Approximately 28 and 13% of the dose in the excreta corresponded to imatinib and CGP74588, respectively
Human Pharmacokinetics and Safety Profile of Finafloxacin, a New Fluoroquinolone Antibiotic, in Healthy Volunteersâ–¿â€
Finafloxacin is a new fluoroquinolone antibiotic with the unique property of increasing antibacterial activity at pH values lower than neutral. Whereas its antibacterial activity at neutral pH matches that of other quinolones in clinical use, it is expected to surpass this activity in tissues and body fluids acidified by the infection or inflammation processes. Pharmacokinetic parameters of oral single and multiple doses of up to 800 mg of finafloxacin and safety/tolerability observations were assessed in a phase I study including 95 healthy volunteers. Finafloxacin is well absorbed after oral administration, generating maximum concentrations (Cmaxs) in plasma at least comparable to those of other fluoroquinolones, with a half-life of around 10 h. About one-third of the dose is excreted unchanged in the urine. Renal elimination appears to be a saturable process leading to slight increases of the area under the concentration-time curve extrapolated to infinity and dose normalized (AUC∞,norm) at dosages of 400 mg and above. Safety and tolerability data characterize finafloxacin as a drug with a favorable safety profile. In particular, adverse reactions regarded as class-typical of fluoroquinolones, such as, e.g., electrocardiogram (ECG) changes, neurotoxic effects, or hypoglycemia, were not observed in the study population