5,912 research outputs found

    Analyzing a Bose polaron across resonant interactions

    Full text link
    Recently, two independent experiments reported the observation of long-lived polarons in a Bose-Einstein condensate, providing an excellent setting to study the generic scenario of a mobile impurity interacting with a quantum reservoir. Here, we expand the experimental analysis by disentangling the effects of trap inhomogeneities and the many-body continuum in one of these experiments. This makes it possible to extract the energy of the polaron at a well-defined density as a function of the interaction strength. Comparisons with quantum Monte-Carlo as well as diagrammatic calculations show good agreement, and provide a more detailed picture of the polaron properties at stronger interactions than previously possible. Moreover, we develop a semi-classical theory for the motional dynamics and three-body loss of the polarons, which partly explains a previously unresolved discrepancy between theory and experimental observations for repulsive interactions. Finally, we utilize quantum Monte-Carlo calculations to demonstrate that the findings reported in the two experiments are consistent with each other

    Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment

    Get PDF
    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel plate capacitor. Using both numerical and asymptotic approaches we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle and pressure as functions of the zero-field contact angle, drop radius, surface tension and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained

    Tackling the Monday Morning Quarterback: Applications of Hindsight Bias in Decision-Making Settings

    Get PDF
    Extant research has focused largely on what causes hindsight distortion. In contrast, this work examines applied aspects related to the bias in decision-making environments. A conceptual framework is provided and recent real–world examples are presented to outline how decision makers—and those who observe them—show hindsight effects. Then, both negative and positive consequences of the bias are outlined. Strategies are presented to reduce negative effects that occur when decision makers show hindsight distortion. Finally, because it is often not possible to avoid or to correct others\u27 hindsight–tainted evaluations, suggestions for coping with the bias are discussed

    A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    Full text link
    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 +/- 0.06 microGauss. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 +/- 0.4 microGauss oriented at a position angle 4 +/- 12 degs, measured counter-clockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a "pan-Magellanic'' magnetic field. A cosmic-ray driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed uni-directional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.Comment: 28 pages, 6 figures, accepted for publication in Ap

    Dielectrophoresis-Driven Spreading of Immersed Liquid Droplets

    Get PDF
    In recent years electrowetting-on-dielectric (EWOD) has become an effective tool to control partial wetting. EWOD uses the liquid−solid interface as part of a capacitive structure that allows capacitive and interfacial energies to adjust by changes in wetting when the liquid−solid interface is charged due to an applied voltage. An important aspect of EWOD has been its applications in micro fluidics in chemistry and biology and in optical devices and displays in physics and engineering. Many of these rely on the use of a liquid droplet immersed in a second liquid due to the need either for neutral buoyancy to overcome gravity and shield against impact shocks or to encapsulate the droplet for other reasons, such as in microfluidic-based DNA analyses. Recently, it has been shown that nonwetting oleophobic surfaces can be forcibly wetted by nonconducting oils using nonuniform electric fields and an interface-localized form of liquid dielectrophoresis (dielectrowetting). Here we show that this effect can be used to create films of oil immersed in a second immiscible fluid of lower permittivity. We predict that the square of the thickness of the film should obey a simple law dependent on the square of the applied voltage and with strength dependent on the ratio of difference in permittivity to the liquid-fluid interfacial tension, ΔΔ/ÎłLF. This relationship is experimentally confirmed for 11 liquid−air and liquid−liquid combinations with ΔΔ/ÎłLF having a span of more than two orders of magnitude. We therefore provide fundamental understanding of dielectrowetting for liquid-in-liquid systems and also open up a new method to determine liquid−liquid interfacial tensions

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Dielectric susceptibility of the Coulomb-glass

    Full text link
    We derive a microscopic expression for the dielectric susceptibility χ\chi of a Coulomb glass, which corresponds to the definition used in classical electrodynamics, the derivative of the polarization with respect to the electric field. The fluctuation-dissipation theorem tells us that χ\chi is a function of the thermal fluctuations of the dipole moment of the system. We calculate χ\chi numerically for three-dimensional Coulomb glasses as a function of temperature and frequency
    • 

    corecore