24 research outputs found

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well

    Reconstructing the anatomy of the 42-million-year-old fossil Mengea tertiaria (Insecta, Strepsiptera)

    No full text
    Fossilization in amber is unique in preserving specimens with microscopic fidelity; however, arthropod inclusions are rarely examined beyond the exoskeleton as this requires destructive sampling when traditional techniques are used. We report the first complete, digital 3D, non-destructive reconstruction of the anatomy of an insect fossil, a specimen of Mengea tertiaria embedded in a 42-Ma Baltic amber. This was made possible using Synchrotron micro-CT. The species belongs to the stem group of the phylogenetically enigmatic and extremely specialized Strepsiptera. Most internal structures of the fossil are preserved, but small parts of the lumen had decayed due to incomplete infiltration of the resin. Data on internal organs provided additional information for resolving phylogenetic relationships. A sister group relationship between Mengea and all extant lineages of the group was confirmed with characters previously not accessible. The newly gained information also yielded some insights in the biology of Mengea and the early evolutionary history of Strepsiptera. The technique has a tremendous potential for a more accurate interpretation of diverse fossil arthropods preserved in ambers from 130 Ma to the present

    The abdomen of a free‐living female of Strepsiptera and the evolution of the birth organs

    No full text
    Mengenillidae is a small, basal family of Strepsiptera, mainly characterized by free-living females in contrast to the endoparasitic females of Stylopidia. Here, we describe external and internal structures of the female abdomen of Eoxenos laboulbenei (Mengenillidae). The external morphol- ogy was examined and documented using microphotography. Internal structures were reconstructed three-dimensionally using a μCT-data set. The morphologically simplified abdo- men comprises 10 segments. The integument is weakly sclerotized and flexible. Spiracles are present dorsolaterally on segments I–VII. Segment VII bears the posteroventral birth opening and the small abdominal segment X carries the anus at its apex. Numerous eggs float freely in the hemolymph. The musculature of segments I–IV is composed of ventral and dorsal longitudinal muscle bundles, strongly developed paramedial dorsoventral muscles and a complex meshwork of small pleural muscles, with minimal differences between the segments. Segments V–X contain more than 50 individual muscles, even though the musculature as a whole is weakly developed. Even though it is not involved in processing food, the digestive tract is well-developed. Its pos- tabdominal section comprises a part of the midgut and the short hindgut. The midgut fills a large part of the postabdominal lumen. The lumina of the midgut and hindgut are not connected. Five or six nodular Malpighian tubules open into the digestive tract at the border region between the midgut and hindgut. The birth organ below the midgut releases the primary larvae after hatching via the birth opening at segment VII. It is likely derived from primary female genital ducts. The presence of six additional birth organs of segments I–VI are de novo formations and a groundplan apomorphy of Stylopidia, the large strepsipteran subgroup with endoparasitic females. The loss of the primary birth organ of segment VII is an apomorphy of Stylopiformia (Stylopidia excl. Corioxenidae)

    Cephalic anatomy and three-dimensional reconstruction of the head of Catops ventricosus (Weise, 1877) (Coleoptera: Leiodidae: Cholevinae)

    No full text
    Adult head structures are well known in the coleopteran suborders Archostemata and Adephaga, whereas the available information is very fragmentary in the megadiverse Polyphaga, including the successful superfamily Staphylinoidea. In the present study, the cephalic morphology of the cholevine species Catops ventricosus is described in detail and documented. The results were compared to conditions occurring in other polyphagan lineages, especially staphylinoid and scarabaeoid representatives. Specific external features documented in Catops and potential autapomorphies of Leiodidae include a five-segmented antennal club with a reduced eighth antennomere and the presence of periarticular grooves filled with sensilla on antennomeres 7, 9, and 10. The firm connection of the head and pronotum is possibly an apomorphy of Cholevinae. The monophyly of Cholevinae excluding Eucatopini and Oritocatopini is supported by the apical maxillary palpomere as long as or shorter than the subapical one, and the presence of cryptic pore plates on the surface of these palpomeres—a feature described and documented here for the first time. The internal cephalic structures of Catops are mostly plesiomorphic, as for instance the complete tentorium. The pattern of the muscles is similar to what is found in other staphylinoid taxa. The unusual maxillary muscle “Mx” is likely a groundplan apomorphy of the clade Staphyliniformia + Scarabaeoidea. M. hypopharyngomandibularis (M13) was identified in Catops and is ancestral for Coleoptera, even though it is often missing. The same applies to M. tentoriohypopharyngalis (M42).The PhD study of CAC as well as his research internship at the Friedrich-Schiller-Universität was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2012/19002-0 and 2014/22088-0). PG was also supported by FAPESP (2013/06314-7) and MY by the DAAD, which is also gratefully acknowledged. The stay of IR in the Phyletisches Museum in Jena was funded by a Salvador de Madariaga grant (PRX14/00583).Peer reviewe
    corecore