199 research outputs found

    Structured illumination microscopy using micro-pixellated light-emitting diodes

    Get PDF
    Structured illumination is a flexible and economical method of obtaining optical sectioning in wide-field microscopy [1]. In this technique the illumination system is modified to project a single-spatial frequency grid pattern onto the sample [2, 3]. The pattern can only be resolved in the focal plane and by recording images for different transverse grid positions (or phases) an image of the in-focus parts of the object can be calculated. Light emitting diodes (LEDs) are becoming increasingly popular for lighting and illumination systems due to their low cost, small dimensions, low coherence, uniform illumination, high efficiency and long lifetime. These properties, together with recent developments in high brightness, ultraviolet operation and microstructured emitter design offer great potential for LEDs as light sources for microscopy. In this paper we demonstrate a novel structured illumination microscope using a blue micro-structured light emitting diode as the illumination source. The system is potentially very compact and has no-moving-parts

    Background fluorescence reduction and absorption correction for fluorescence reflectance imaging

    Get PDF
    International audienceIntraoperative fluorescence imaging in reflectance geometry (FRI) is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We presented a FRI technique relying on a laser line scanning instead of a uniform illumination. Here, we propose a correction technique based on this illumination scheme. We scan the medium with the laser line and acquire at each position of the line both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity pro le and the background fluorescence one. This allows us to predict the amount of signal to subtract to the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the eff ects of absorption heterogeneities, leading to a better accuracy for the detection. This technique has been validated on simulations (with a Monte-Carlo code and with the di usion approximation using NIRFAST) and experimentally with tissue-like liquid phantoms with di erent levels of background fluorescence. Fluorescent inclusions are observed in several con gurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared to those obtained with a more classical wide- field detection scheme for the contrast enhancement and to the fluorescence to excitation ratio approach for the absorption correction

    Micro-endoscope for in vivo widefield high spatial resolution fluorescent imaging

    Get PDF
    In this paper we report the design, testing and use of a scannerless probe specifically for minimally invasive imaging of deep tissue in vivo with an epi-fluorescence modality. The probe images a 500 μm diameter field of view through a 710 μm outer diameter probe with a maximum tissue penetration depth of 15 mm specifically configured for eGFP imaging. Example results are given from imaging the pituitary gland of rats and zebrafish hearts with lateral resolution of 2.5 μm

    Preserving of postnatal leptin signaling in obesity-resistant lou/c rats following a perinatal high-fat diet

    Get PDF
    Physiological processes at adulthood, such as energy metabolism and insulin sensitivity may originate before or weeks after birth. These underlie the concept of fetal and/or neonatal programming of adult diseases, which is particularly relevant in the case of obesity and type 2 diabetes. The aim of this study was to determine the impact of a perinatal high fat diet on energy metabolism and on leptin as well as insulin sensitivity, early in life and at adulthood in two strains of rats presenting different susceptibilities to diet-induced obesity. The impact of a perinatal high fat diet on glucose tolerance and diet-induced obesity was also assessed. The development of glucose intolerance and of increased fat mass was confirmed in the obesity-prone Wistar rat, even after 28 days of age. By contrast, in obesity-resistant Lou/C rats, an improved early leptin signaling may be responsible for the lack of deleterious effect of the perinatal high fat diet on glucose tolerance and increased adiposity in response to high fat diet at adulthood. Altogether, this study shows that, even if during the perinatal period adaptation to the environment appears to be genetically determined, adaptive mechanisms to nutritional challenges occurring at adulthood can still be observed in rodents

    A Method for the Determination of Bi-substrate Kinetic Coefficients: the Example of the β-D-glucose-NAD-GDH Enzymatic Reaction

    Get PDF
    Abstract: Colorimetric detection of glucose in sample liquids such as human plasma is made by using enzymatic reactions. Either glucose oxidase (GOX) or glucose dehydrogenase (GDH) can be used to convert glucose. In the multi reactional scheme, the first enzymatic reaction is determinant. We focused here on the study of the enzyme GDH together with the enzymatic cofactor NAD (nicotinamide adenine dinucleotide). This reaction falls in the category of ternary enzymatic reactions. Such reactions depend on four parameters. A method to determine these four parameters is presented in this work, based on a comparison between a series of experiments and the theory. The best values of the parameters are indicated

    Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging

    Get PDF
    International audienceIntraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire at each position of the line both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract to the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared to those obtained with a classical wide-field detection scheme for the contrast enhancement and to the fluorescence by excitation ratio approach for the absorption correction
    corecore