89 research outputs found

    Population genomic analysis of base composition evolution in Drosophila melanogaster.

    Get PDF
    The relative importance of mutation, selection, and biased gene conversion to patterns of base composition variation in Drosophila melanogaster, and to a lesser extent, D. simulans, has been investigated for many years. However, genomic data from sufficiently large samples to thoroughly characterize patterns of base composition polymorphism within species have been lacking. Here, we report a genome-wide analysis of coding and noncoding polymorphism in a large sample of inbred D. melanogaster strains from Raleigh, North Carolina. Consistent with previous results, we observed that AT mutations fix more frequently than GC mutations in D. melanogaster. Contrary to predictions of previous models of codon usage in D. melanogaster, we found that synonymous sites segregating for derived AT polymorphisms were less skewed toward low frequencies compared with sites segregating a derived GC polymorphism. However, no such pattern was observed for comparable base composition polymorphisms in noncoding DNA. These results suggest that AT-ending codons could currently be favored by natural selection in the D. melanogaster lineage

    The impact of equilibrium assumptions on tests of selection

    Get PDF
    With the increasing availability and quality of whole genome population data, various methodologies of population genetic inference are being utilized in order to identify and quantify recent population-level selective events. Though there has been a great proliferation of such methodology, the type-I and type-II error rates of many proposed statistics have not been well-described. Moreover, the performance of these statistics is often not evaluated for different biologically relevant scenarios (e.g., population size change, population structure), nor for the effect of differing data sizes (i.e., genomic vs. sub-genomic). The absence of the above information makes it difficult to evaluate newly available statistics relative to one another, and thus, difficult to choose the proper toolset for a given empirical analysis. Thus, we here describe and compare the performance of four widely used tests of selection: SweepFinder, SweeD, OmegaPlus, and iHS. In order to consider the above questions, we utilize simulated data spanning a variety of selection coefficients and beneficial mutation rates. We demonstrate that the LD-based OmegaPlus performs best in terms of power to reject the neutral model under both equilibrium and non-equilibrium conditions-an important result regarding the relative effectiveness of linkage disequilibrium relative to site frequency spectrum based statics. The results presented here ought to serve as a useful guide for future empirical studies, and provides a guide for statistical choice depending on the history of the population under consideration. Moreover, the parameter space investigated and the Type-I and Type-II error rates calculated, represent a natural benchmark by which future statistics may be assessed

    On the Prospect of Identifying Adaptive Loci in Recently Bottlenecked Populations

    Get PDF
    Identifying adaptively important loci in recently bottlenecked populations – be it natural selection acting on a population following the colonization of novel habitats in the wild, or artificial selection during the domestication of a breed – remains a major challenge. Here we report the results of a simulation study examining the performance of available population-genetic tools for identifying genomic regions under selection. To illustrate our findings, we examined the interplay between selection and demography in two species of Peromyscus mice, for which we have independent evidence of selection acting on phenotype as well as functional evidence identifying the underlying genotype. With this unusual information, we tested whether population-genetic-based approaches could have been utilized to identify the adaptive locus. Contrary to published claims, we conclude that the use of the background site frequency spectrum as a null model is largely ineffective in bottlenecked populations. Results are quantified both for site frequency spectrum and linkage disequilibrium-based predictions, and are found to hold true across a large parameter space that encompasses many species and populations currently under study. These results suggest that the genomic footprint left by selection on both new and standing variation in strongly bottlenecked populations will be difficult, if not impossible, to find using current approaches

    Recent Progress in Polymorphism-Based Population Genetic Inference

    Get PDF
    The recent availability of whole-genome sequencing data affords tremendous power for statistical inference. With this, there has been great interest in the development of polymorphism-based approaches for the estimation of population genetic parameters. These approaches seek to estimate, for example, recently fixed or sweeping beneficial mutations, the rate of recurrent positive selection, the distribution of selection coefficients, and the demographic history of the population. Yet despite estimating similar parameters using similar data sets, results between methodologies are far from consistent. We here summarize the current state of the field, compare existing approaches, and attempt to reconcile emerging discrepancies. We also discuss the biases in selection estimators introduced by ignoring the demographic history of the population, discuss the biases in demographic estimators introduced by assuming neutrality, and highlight the important challenge to the field of achieving a true joint estimation procedure to circumvent these confounding effect

    Evolution of the influenza A virus genome during development of oseltamivir resistance in vitro

    Get PDF
    Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y resistance mutation fixed reproducibly within the population. The presence of the H274Y mutation in the viral population, at either a low or a high frequency, led to measurable changes in the neuraminidase inhibition assay. Surprisingly, fixation of the resistance mutation was not accompanied by alterations of viral population diversity or differentiation, and oseltamivir did not alter the selective environment. While the neighboring K248E mutation was also a target of positive selection prior to H274Y fixation, H274Y was the primary beneficial mutation in the population. In addition, once evolved, the H274Y mutation persisted after the withdrawal of the drug, even when not fixed in viral populations. We conclude that only selection of H274Y is required for oseltamivir resistance and that H274Y is not deleterious in the absence of the drug. These collective results could offer an explanation for the recent reproducible rise in oseltamivir resistance in seasonal H1N1 IAV strains in humans

    Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes

    Get PDF
    IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97^(R155H) with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97^(R155H) mutant all show up configurations in ADP- or ATPÎłS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97^(R155H) ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97^(R155H)

    Mutations in influenza A virus neuraminidase and hemagglutinin confer resistance against a broadly neutralizing hemagglutinin stem antibody

    Get PDF
    Influenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting influenza hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. We used an integrated approach combining viral passaging, deep sequencing, and protein structural analyses to define escape mutations and mechanisms of neutralization escape in vitro for the F10 sBnAb. IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase (NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) are away from the F10 epitope but may indirectly impact influenza receptor binding, endosomal fusion, or budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, affects the active site of NA, highlighting the importance of the balance between HA and NA function for viral survival. Thus, whole genome population sequencing enables the identification of viral resistance mutations responding to antibody-induced selective pressure.IMPORTANCE Influenza A virus is a public health threat for which currently available vaccines are not always effective. Broadly neutralizing antibodies that bind to the highly-conserved stem region of influenza hemagglutinin (HA) can neutralize many influenza strains. To understand how influenza virus can become resistant or escape such antibodies, we propagated influenza A virus in vitro with escalating concentrations of antibody and analyzed viral populations with whole genome sequencing. We identified HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus function

    Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans

    Get PDF
    The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans

    Incidence of acute cerebrovascular events in patients with rheumatic or calcific mitral stenosis: a systematic review and meta-analysis

    Get PDF
    Background Patients with mitral stenosis (MS) may be predisposed to acute cerebrovascular events (ACE) and peripheral thromboembolic events (TEE). Concomitant atrial fibrillation (AF), mitral annular calcification (MAC) and rheumatic heart disease (RHD) are independent risk factors. Our aim was to evaluate the incidence of ACEs in MS patients and the implications of AF, MAC, and RHD on thromboembolic risks. Methods This systematic review was registered on PROSPERO (CRD42021291316). Six databases were searched from inception to 19th December 2021. The clinical outcomes were composite ACE, ischaemic stroke/transient ischaemic attack (TIA), and peripheral TEE. Results We included 16 and 9 papers, respectively, in our qualitative and quantitative analyses. The MS cohort with AF had the highest incidence of composite ACE (31.55%; 95%CI 3.60-85.03; I 2 =99%), followed by the MAC (14.85%; 95%CI 7.21-28.11; I 2 =98%), overall MS (8.30%; 95%CI 3.45-18.63; I 2 =96%) and rheumatic MS population (4.92%; 95%CI 3.53-6.83; I 2 =38%). Stroke/TIA were reported in 29.62% of the concomitant AF subgroup (95%CI 2.91-85.51; I 2 =99%) and in 7.11% of the overall MS patients (95%CI 1.91-23.16; I 2 =97%). However, the heterogeneity of the pooled incidence of clinical outcomes in all groups, except the rheumatic MS group, were substantial and significant. The logit-transformed proportion of composite ACE increased by 0.0141 (95% CI 0.0111-0.0171; p<0.01) per year of follow-up. Conclusion In the MS population, MAC and concomitant AF are risk factors for the development of ACE. The scarcity of data in our systematic review reflects the need for further studies to explore thromboembolic risks in all MS subtypes
    • …
    corecore