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Abstract 24 

 Influenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in 25 

response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting influenza 26 

hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. 27 

We used an integrated approach combining viral passaging, deep sequencing, and protein structural 28 

analyses to define escape mutations and mechanisms of neutralization escape in vitro for the F10 sBnAb. 29 

IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select 30 

for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase 31 

(NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in 32 

resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) 33 

are away from the F10 epitope but may indirectly impact influenza receptor binding, endosomal fusion, or 34 

budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, 35 

affects the active site of NA, highlighting the importance of the balance between HA and NA function for 36 

viral survival. Thus, whole genome population sequencing enables the identification of viral resistance 37 

mutations responding to antibody-induced selective pressure.  38 

Importance 39 

 Influenza A virus is a public health threat for which currently available vaccines are not always 40 

effective. Broadly neutralizing antibodies that bind to the highly-conserved stem region of influenza 41 

hemagglutinin (HA) can neutralize many influenza strains. To understand how influenza virus can become 42 

resistant or “escape” such antibodies, we propagated influenza A virus in vitro with escalating 43 

concentrations of antibody and analyzed viral populations with whole genome sequencing. We identified 44 

HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody 45 

neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in 46 

the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew 47 

under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by 48 
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antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus 49 

function.   50 
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Introduction 51 

Influenza A virus (IAV) causes a highly contagious acute respiratory illness in humans that is 52 

responsible for significant morbidity and mortality. IAV’s unique combination of evolutionary 53 

mechanisms, including high mutation rate, segment reassortment, and shifts between multiple host species, 54 

pose significant challenges for controlling the disease and developing effective vaccinations. The influenza 55 

virion consists of eight negative-strand RNA segments which form protein-RNA complexes enveloped in a 56 

lipid membrane (1). These eight segments encode at least ten proteins known to be essential for infectivity 57 

and replication. The influenza polymerase lacks proofreading activity, resulting in a high spontaneous gene 58 

mutation rate (2). Within a given influenza strain, sequence evolution proceeds by mutation, selection, and 59 

genetic drift, all of which are affected by the host and by drug treatment. High mutation rates, together with 60 

development of influenza epidemics, make tracing the evolutionary history of the virus and discovering the 61 

principles governing IAV’s evolution complex. Therefore a detailed understanding of IAV genome 62 

sequence evolution is imperative. 63 

IAV has two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). HA helps the 64 

viral genome enter the host cytoplasm through fusion of the viral membrane with the intracellular 65 

endosomal membrane (3). NA cleaves sialic acid from the host cell membrane during the release of newly 66 

formed viral progeny, thus reducing viral affinity for previously-infected cells (4). Eighteen different 67 

subtypes of influenza A HA (H1–H18) exist, which are divided into two distinct groups, group 1 (H1, H2, 68 

H5, H6, H8, H9, H11–H13, H16-H18) and group 2 (H3, H4, H7, H10, H14 and H15). HA is translated as a 69 

single polypeptide (HA0) that is cleaved by host proteases into HA1 and HA2 subunits, HA functions as a 70 

homo trimer composed of two copies of HA1 and one copy of HA2; the globular head (the receptor binding 71 

site) is formed by HA1, and the stem (or “stalk”) region is formed by both HA2 and HA1 and is responsible 72 

for fusion [see (5) for review]. HA is the primary target of the humoral immune response during infection 73 

or vaccination. Influenza vaccines generally elicit strain-specific responses with antibodies that target the 74 

HA globular head, thereby limiting their efficacy and necessitating administration of new vaccines when a 75 
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novel strain becomes dominant. 76 

Broadly neutralizing antibodies (BnAbs) bind to conserved epitopes on HA and can neutralize a 77 

wide spectrum of influenza viruses (6). In influenza, BnAb epitopes typically correspond to receptor 78 

binding and fusion machinery regions that are functionally conserved and thus less prone to mutation. 79 

BnAbs are potential therapeutic agents when used as passive immunotherapy and can also be integrated 80 

into the design of universal vaccines, which could provide protection against a broad range of influenza 81 

strains and be much more effective than current vaccines. BnAbs against the influenza receptor-binding site 82 

have limited neutralization capacity with each antibody effectively neutralizing a subset of strains in both 83 

groups 1 and 2 (6-8). Several stem-directed broadly neutralizing antibodies (sBnAbs) against highly 84 

conserved epitopes on the HA stem have been developed and characterized, including F10, C179, CR6261, 85 

which neutralize group 1 variants; CR8020, which neutralizes group 2 variants; and CR9114, 3I14, and 86 

39.29, which neutralize both groups 1 and 2 (6, 9-11). sBnAbs that neutralize group 1 viruses share an 87 

epitope on the HA stem, while the epitope for group 2-specific antibodies is shifted toward the base of the 88 

HA stem. Structural analyses revealed that differences in the binding footprints are due to conformational 89 

constraints resulting from group-specific glycans on the HA stem (8).  90 

sBnAbs prevent fusion of the host and virus membranes in the low pH of the endosome by locking 91 

HA in a pre-fusion conformation and preventing the extensive conformational changes in HA required for 92 

membrane fusion, blocking entry of viral RNA into the infected cell (8). Additional Fc-dependent 93 

mechanisms also contribute to protection in vivo (12). Despite the high conservation of sBnAbs epitopes in 94 

the HA stem region, neutralization escape mutations by sBnAbs have occurred in and around these epitopes 95 

(6, 13-17). Many of these mutations cause neutralization escape by directly reducing antibody binding 96 

affinity, but additional escape mechanisms that impact HA function or viral fitness may also emerge. A 97 

recent mutational scanning study of H1 HA has shown that single amino acid mutations are more likely to 98 

confer resistance against strain-specific antibodies that target the globular head of HA1 while similar 99 

mutations in the stalk confer only modest resistance to neutralization by sBnAbs (18). Another study 100 
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identified two escape mechanisms against a pan-IAV sBnAb, and some resistant viruses exhibited complete 101 

abolition of antibody binding while others showed enhanced fusion ability by HA (11). Defining such 102 

escape mechanisms is critical for evaluating sBnAbs to be incorporated into future vaccines and as 103 

therapeutic strategies.  104 

The F10 antibody, a sBnAb derived from the IGHV1-69 germline by panning immobilized HA 105 

using phage-display libraries generated from healthy donors, is broadly active against all group 1 viruses 106 

and protects mice from lethal H1N1 or H5N1 infection and reduces viral replication in lungs (9). sBnAbs 107 

such as F10 bind to highly-conserved regions of HA that are required for the virus to function, so 108 

characterizing sBnAb escape mutations that do not compromise virus survival provides insight for 109 

influenza biology. The goal of the current study was to identify IAV escape mutants for the sBnAb F10 by 110 

high throughput sequencing (HTS) analysis of virus populations generated through in vitro trajectory 111 

experiments. To select for escape mutants, we propagated the virus under the selective pressure of 112 

escalating concentrations of F10. Four mutations were identified, three in HA (none located in the F10 113 

epitope) and one in NA, that were subsequently confirmed through reverse genetics to cause F10 resistance. 114 

A combination of structural and dynamic analyses reveal possible molecular mechanisms by which these 115 

mutations can confer F10 resistance. Thus, under the strict selective pressure of an antibody that targets an 116 

evolutionarily conserved and functionally critical region, influenza virus selects for indirect mechanisms of 117 

escape for survival.  118 

Results  119 

Serial passage of influenza A virus in the presence of F10 120 

We tested F10 against influenza A/Brisbane/59/2007 (H1N1) virus in Madin-Darby canine kidney 121 

(MDCK) cells in our experimental trajectories (Figure 1). The A/Brisbane/59/2007 strain was used in the 122 

influenza vaccine in the United States for the 2008/2009 and 2009/2010 seasons (19). We passaged IAV 123 

under escalating concentrations of F10 monoclonal antibody, starting with 1X the 50% effective 124 

concentration (EC50), or 0.3 μg/mL, at passage 4 and escalating to ≥5 μg/mL in MDCK cells to select for an 125 
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F10-resistant virus population in two independent trajectories, designated Experiments 1 & 2. Each 126 

experiment included a complete no-antibody control arm. In Experiment 2, we included an additional 127 

control with escalating concentrations of an irrelevant monoclonal antibody, 80R, specific to severe acute 128 

respiratory syndrome coronavirus (20) (Figure 1A). The amplification of virus over time is displayed in 129 

Figure 1B. 130 

Sequence analysis reveals candidate F10 escape mutations 131 

 Analysis of HTS data from Experiments 1 & 2 using the Wright-Fisher ABC (WFABC) model 132 

identified viral mutations with a 99% posterior probability of being under positive selection (Table 1) (21, 133 

22). These candidate F10 escape mutations included three non-synonymous mutations in segment 4 134 

encoding HA: N203V
HA

, N460S
HA

, and S123G
HA

 (H1 numbering system) and one non-synonymous 135 

mutation in segment 6 encoding NA, E329K
NA

. The selection of E329K
NA

 was observed in both 136 

trajectories with F10, but not with the 80R control. In addition, one non-synonymous mutation in segment 137 

2, A643T
PB1

, one non-synonymous mutation in segment 3, L28P
PA

, and synonymous mutations in segments 138 

4 and 5 were identified. The synonymous changes appear consistent with genetic hitchhiking effects 139 

associated with the above listed non-synonymous mutations, owing to their common trajectories. The allele 140 

frequencies increased with each passage, and none of these mutations were elicited with the irrelevant 141 

control 80R antibody or in the absence of antibody (Figure 2A). Selection coefficients are shown in Figure 142 

2B, and the posterior estimates of effective population size (Ne) are shown in Figure 2C. As expected, Ne is 143 

reduced in the challenged population. Segment 4 mutations A638G and A639T generate a double mutant in 144 

perfect linkage to encode the N203V
HA

 amino acid substitution. 145 

F10 resistance validated by reverse genetics of individual mutant viruses 146 

 A reverse genetics approach was employed to generate influenza virus A/Brisbane/59/2007 bearing 147 

individual mutations S123G
HA

, N203V
HA

, N460S
HA

, E329K
NA

 and the oseltamivir resistance mutation 148 

H275Y
NA

 (N1 numbering) as a control. Consistent with results from the serial passaging experiment, the 149 
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mutations S123G
HA

, N203V
HA

, N460S
HA

, and E329K
NA

 each conferred resistance to F10 relative to wild 150 

type (WT), as demonstrated by higher viral titers in the presence of F10 (Figure 3A). The HA mutants 151 

(N460S
HA

, S123G
HA

, and N203V
HA

) and NA mutant (E329K
NA

) grew to higher titers than WT in the 152 

presence of >0.7 g/mL of F10, while the control mutant H275Y
NA

 had titers comparable to that of WT 153 

virus. Of interest, the double mutant N203V
HA

_E329K
NA

 had slightly higher titers at the intermediate 154 

concentration of 1.3 g/mL of F10 than each mutant individually, suggesting that adaptation to F10 may 155 

involve a complex and concentration-dependent fitness landscape. EC50 and EC90 calculations revealed that 156 

all resistant mutations exhibited higher EC90 values compared to WT (Table 2), although the EC50 for the 157 

E329K
NA

 mutation was comparable to that of WT. The oseltamivir EC50 values for WT, E329K
NA

, and 158 

H275Y
NA

 were also determined (Figure 3B). Oseltamivir EC50 values for WT, E329K
NA

, and H275Y
NA

 are 159 

0.2, 3.0, and 86.6 M, respectively. E329K has been shown to reduce NA enzymatic activity relative to 160 

WT A/Brisbane/59/2007 (23), which is consistent with the increase of oseltamivir’s effective concentration 161 

for E329K
NA

 compared to WT. Overall, the reverse genetics enabled generating virus harboring the 162 

individual selected mutations from in vitro passaging and confirming that these mutations confer resistance 163 

to F10.  164 

 We measured the plaque diameter of individually cloned viruses to determine the fitness of the 165 

identified escape mutations in HA and NA. In the absence of selection pressure by F10, the plaque sizes of 166 

N460S
HA

 and S123G
HA

 mutants were similar to that of WT. However, the plaque sizes of N203V
HA

 and 167 

E329K
NA

 were smaller than that of WT (Figure 4). This observation is consistent with studies that showed 168 

that the E329K
NA

 mutation, which was previously identified as important for antigenic drift, reduces NA 169 

enzyme activity and virus fitness (33). Plaques for the double mutant N203V
HA

_E329K
NA

 were even 170 

smaller, possibly reflecting the effects of both mutations. Thus, while high titers of N203V
HA

 were 171 

observed in the presence of F10, N203V
HA

 appeared less fit based on plaque size. 172 

Structural mapping of F10 escape mutants in HA 173 
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 To further investigate the mutations selected in HA and identify escape mechanisms, we mapped 174 

the non-synonymous mutations N460S
HA

, S123G
HA

, and
 
N203V

HA
 onto available crystal structures. 175 

Notably, the mutations are located away from the F10 binding epitope (Figure 5). Instead of directly 176 

affecting F10 antibody binding, these distal mutations likely cause antibody escape through indirect 177 

mechanisms. Influenza RNA enters the host cell and the viral envelope and the endosomal membrane fuse. 178 

The N-terminal fragment of the HA2 subunit, or the fusion peptide, mediates fusion. At neutral pH, the 179 

fusion peptide is buried in a negatively-charged pocket in the stem of HA, but at acidic pH, the fusion 180 

peptide dissociates from the HA stem and inserts into the endosomal membrane to promote fusion between 181 

the viral membrane and the endosomal membrane (5, 24, 25).  182 

 Two non-synonymous HA mutations selected by the F10 antibody in Experiment 1, N460S
HA

 and 183 

S123G
HA

, are located at key positions involved in the conformational changes needed to facilitate 184 

membrane fusion (Figure 5). The side chain of N460 forms an intermonomer hydrogen bond adjacent to 185 

the fusion peptide which is broken when HA undergoes its conformational change upon fusion, thereby 186 

exposing N460 (Figure 6). N460 is the closest of the observed mutations to the F10 epitope on the HA 187 

stem, as residues 17-21 of the fusion peptide form the center of the F10 epitope. In the N460S, the shorter 188 

serine would be less likely to form this hydrogen bond and may alter the stability of the conformational 189 

change in HA (26, 27). S123 is located at a hinge region of the HA1 subunit (Figure 7). HA1 acts as a 190 

clamp on HA2 and stabilizes the metastable prefusion state of HA (28). Upon fusion, HA1 undergoes 191 

major conformational changes, one of which occurs around S123. In this region, an alpha helix begins to 192 

unfold altering the adjacent antiparallel beta-sheet that connects to the receptor binding subdomain (28). 193 

The mutation S123G introduces a flexible glycine residue into this hinge, which may facilitate this 194 

conformational change. Thus both N460S
HA

 and S123G
HA

 likely alter the conformational stability of HA.  195 

 The final observed mutation N203V
HA

 is located at the receptor-binding site of HA (Figure 8). The 196 

emergence of N203V
HA

 has been reported in influenza A/Brisbane/59/2007 during propagation of egg-197 

derived virus in either MDCK or Vero cells (29). Residue 203 forms a hydrogen bond with the human 198 
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receptor analog LSTc in H2 HA (30), interacts with sialic acid through hydrogen bonds in H3 subtype 199 

crystal structures (31, 32) and has been implicated in conferring receptor-binding specificity (33). The 200 

selected mutation N203V
HA

 would result in the loss of any hydrogen bond with the receptor at this site. 201 

Thus, N203V
HA

 could potentially alter receptor specificity and affinity. 202 

Structural mapping of an F10 escape mutant in NA 203 

 In addition to mutations in HA, a mutation in the IAV surface protein NA, E329K
NA

, was selected 204 

in vitro and confirmed to cause F10 resistance. Mutations at residue 329 have been previously reported in 205 

response to selection with monoclonal antibodies (34-36). NA functions as a tetramer with substrate (sialic 206 

acid) cleaving active site in each monomer. Residue 329 is located in a loop on the surface of NA, away 207 

from both the tetramer interface and the active site. The E329K
NA

 substitution involves a charge switch 208 

from an acidic to a basic side chain. To investigate the effects of the E329K
NA

 mutation on NA structure 209 

and dynamics, the WT and E329K
NA

 NA tetramer structures of influenza A/Brisbane/59/2007 strain were 210 

modeled and 100 ns molecular dynamics (MD) simulations performed as we have previously described to 211 

interpret resistant mutations in NA (37) and other systems (38-41). The electrostatic surfaces of the two 212 

variants were compared, as E329K
NA

 mutation constitutes an overall charge change of +8e
-
 for the 213 

tetramer. Overall, the root mean square fluctuations (RMSFs, Figure 9A, B) of the active site in WT NA 214 

were higher compared to E329K
NA

 variant, altering the dynamics of the active site. Interestingly, even 215 

though the E329K
NA

 mutation is located far from the active site, the mutation had a distal effect and caused 216 

the active site to become more positively charged (Figure 9C, D). Thus, the E329K
NA

 mutation had 217 

propagating effects to alter the charge surface of the enzyme and fluctuations of the active sites, which may 218 

underlie the decreased enzymatic activity previously reported for E329K
NA

 relative to WT 219 

A/Brisbane/59/2007 (23). This alteration in substrate processing by NA may perturb the balance with HA 220 

function and thus counter F10 inhibition.  221 

Discussion 222 
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BnAbs against influenza have invigorated the influenza field given their potential use for universal 223 

therapies and vaccines that protect against a broad spectrum of strains and subtypes. However, antibody 224 

neutralization escape mutations can emerge, and understanding neutralization escape together with the 225 

underlying molecular mechanisms is critical for designing antibodies that are less prone to resistance. Here, 226 

we identified and characterized F10 escape mutations for a vaccine strain of influenza virus, 227 

A/Brisbane/59/2007, by combining viral passaging, HTS, reverse genetics, and structural analyses. We had 228 

previously applied a similar approach to understand the temporal evolution of oseltamivir resistance (21, 229 

42), viral reassortment (43), and mutagenesis induced by favipiravir (44, 45). In our current results, we 230 

identified mutations in regions of HA that confer virus neutralization (i.e., blockade of viral replication) 231 

and may modulate receptor binding specificity or fusion (46) or viral budding and release of progeny. We 232 

also confirm F10 resistance conferred by an NA mutation previously identified to drive antigenic drift (47).  233 

 The F10 escape mutations identified in HA are not located at the antibody epitope, and thus rather 234 

than directly modulating antibody binding, these mutations instead cause antibody escape by indirect 235 

mechanisms. Mutations at residues 460 and 123 are located in regions of HA that modulate the pH of 236 

fusion (46). Residue N460 (residue 117 of HA2 in H3 numbering) is located in the stem region surrounding 237 

the fusion peptide, and mutations at nearby residues 111, 112, and 114 (H3 numbering) had previously 238 

been reported to increase the pH of fusion in H3, H5, and H7 subtypes (30, 46, 48, 49). Many other 239 

mutations in the fusion peptide or the surrounding pocket have also been shown to significantly affect the 240 

fusion activity of HA or the pH of membrane fusion (30, 46, 48-51). Residue S123 (residue 113 in H3 241 

numbering) is located in a 110-helix that is involved in the reorganization of the HA1-HA2 interface that 242 

occurs during membrane fusion, and mutations at residues 104, 110, and 115 (in H3 numbering) can impact 243 

the pH of fusion due to changes at the HA1-HA2 interface (46, 52). Mutations at residue 203 (190 in H3 244 

numbering) have been reported to impact receptor specificity for substrates with an α-2,3 or α-2,6 245 

glycosidic linkage between the terminal sialic acid and the adjacent carbohydrate (47, 53-56). For instance, 246 

the mutation E190D
HA

 in combination with G225D
HA

 (H3 numbering) in H1 increases specificity for α-2,6 247 
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linked sialic acids and reduces affinity for α-2,3 linked sialic acids (56). Such mutations that alter receptor-248 

binding affinity are selected in response to other neutralizing antibodies as well (57, 58). Overall, we found 249 

that under the selective pressure of a sBnAb that has a highly conserved epitope, mutations distal to the 250 

antibody binding epitope in HA are selected to enable antibody escape. 251 

In addition to mutations in HA, we found a mutation in NA that confers F10 resistance. This 252 

E329K
NA

 mutation in influenza A/Brisbane/59/2007 was previously described in the antigenic evolution of 253 

proteins in H1N1 viruses used in vaccine formulations during the last 15 years through analysis of 254 

inhibition titers and antigenic cartography (47). This single point mutation was found to be primarily 255 

responsible for the lack of inhibition by polyclonal antibodies specific for an earlier influenza vaccine 256 

antigen, impacting NA drift. Although antigenic change and drift in NA are often due to antibody selection, 257 

antigenic change in NA may also result from a functional change in HA so as to maintain the functional 258 

balance between HA and NA that is essential for optimal virus infectivity (59). Our structural analyses here 259 

revealed the molecular mechanism by which the distal E329K
 
mutation impacts the NA active site, likely 260 

modulating enzymatic activity and the functional HA/NA balance in conferring F10 neutralization escape 261 

of IAV. Our data demonstrate the plasticity of escape and the emergence of strong, off-target resistance via 262 

the NA protein. 263 

 A closer inspection of experimental trajectories suggests that the E329K
NA

 mutation may confer 264 

resistance against F10 in combination with N203V
HA

. Once the E329K
NA

 mutation with reduced NA 265 

activity emerges and reaches a high frequency in the population (Figure 2A, P5 in Experiment 1), the 266 

appearance of the N203V
HA

 mutation restores the HA-NA functional balance and the drug pressure is 267 

effectively reduced thus allowing for further fine-tuning of resistance. These mutations occur in the 268 

opposite order in Experiment 2, in which N203V
HA

 reaches a high frequency at P7, then E329K
NA

 reaches 269 

a similarly high frequency at P10-11 (see Figure 2A). That both trajectories finally stabilized with the two 270 

mutations N203V
HA

 and E329K
NA

 suggests that there is an interdependence in conferring resistance to F10. 271 

A similar pattern of drug resistance was described by Ginting et al. (60), wherein H275Y
NA

 functioned in 272 
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concert with mutations in HA to mediate oseltamivir resistance. These observations highlight potential 273 

intergenic epistatic interactions between HA and NA, which interact with the same molecule, sialic acid, on 274 

host receptors but have antagonistic functions. Interestingly, the average plaque size of virus containing 275 

both N203V
HA

_E329K
NA

 was smaller than viruses containing the individual mutants. The molecular 276 

mechanism of neutralization escape demonstrates the plasticity of escape and the emergence of strong, off-277 

target resistance via the NA protein. The ability of mutant NA to bind HA receptors is demonstrated in 278 

vitro, which suggests that HA receptor-binding function can be supplanted by an appropriately evolved NA 279 

(61).  280 

These results also highlight the role of both genetic drift and genetic hitchhiking in determining 281 

patterns of sequence evolution in IAV. Notably, a number of mutations identified as positively selected in 282 

the presence of F10 were also found to be segregating in the control populations (e.g., A638G and the 283 

linked mutation A639T, as well as T1148C). By chance, these mutations were seeded at an intermediate 284 

frequency in the starting populations, and their subsequent dynamics in the control are consistent with 285 

genetic drift (i.e., fluctuating across passages). Conversely, the frequency dynamics observed in the 286 

presence of F10 are consistent with positive selection. Relatedly, a small number of synonymous mutations 287 

were also observed to similarly increase in frequency. However, their overlapping allele frequency 288 

trajectories with the identified non-synonymous mutations strongly suggest linked, rather than direct, 289 

selection (i.e., genetic hitchhiking).  290 

In summary, we identified mutations at HA and NA that promote resistance to the sBnAb F10 in 291 

vitro. Our results provide further evidence that mutations in one of these functionally complementary 292 

proteins in IAV can facilitate mutations in the other thus shaping the evolutionary landscape of the virus 293 

(62). While the serial passaging and HTS approaches may fail to distinguish functionally interacting 294 

mutations from those simply linked by genetic hitchhiking effects (that is, a beneficial mutation linked to 295 

an otherwise neutral, or even weakly deleterious, mutation), mutant viruses individually generated by 296 

reverse genetics confirmed a functional interplay between N203V
HA

 and E329K
NA

. This result highlights 297 
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the importance of considering not only focal point mutations, but also the variable fitness effects induced 298 

by the genetic backgrounds on which those mutations occur. IAV can use diverse and indirect molecular 299 

mechanisms to escape neutralization by sBnAbs. An in-depth understanding of genome-wide effects of 300 

sBnAbs on different IAV subtypes will yield insights on which “universal” influenza vaccines may be the 301 

most effective and least likely to induce escape mutants. Furthermore, additive and synergistic effects of 302 

single and combinations of HA and NA mutations on virus replication in the presence and absence of 303 

antiviral drugs and sBnAbs can be monitored to define and quantify the impact of multiple selective 304 

pressures on the evolution of resistance over time. Given that these will be “real world” pressures faced by 305 

IAV, such combination studies will be invaluable for determining which combinations may serve as 306 

optimal therapeutic strategies in treating future epidemics and pandemics. 307 

Materials and Methods 308 

Cells, virus stocks, and chemicals. Madin-Darby canine kidney (MDCK) cells were obtained from 309 

American Type Culture Collection (Manassas, VA) and propagated in Eagle’s minimal essential medium 310 

(MEM) with 10% fetal bovine serum (FBS; Hyclone, Logan, UT) and 2 mM penicillin/streptomycin. 311 

Influenza virus A/Brisbane/59/2007 (H1N1), grown in chicken egg allantoic fluid, was obtained through 312 

the NIH Biodefense and Emerging Infections Research Resources Repository, NIAID, NIH (NR-12282; lot 313 

58550257) and passaged three times in MDCK cells (passages 1–3). Oseltamivir carboxylate was obtained 314 

from Roche (F. Hoffmann-La Roche Ltd, Basel, Switzerland). 315 

Viral titer determination by plaque assay. Viruses were quantified on MDCK cells to determine infectious 316 

titer (plaque forming units per mL, or PFU/mL) as previously described (63). In brief, six 10-fold serial 317 

dilutions were performed on the viral samples followed by 1 h of binding at 37 °C on confluent MDCK 318 

cells in 12-well plates. After washing off unbound virus with phosphate buffered saline (PBS), the cells 319 

were overlaid with agar (0.5%) in DMEM-F12 supplemented with penicillin/streptomycin, L-glutamine, 320 

bovine serum albumin, HEPES, sodium bicarbonate, and 20 µg/mL acetylated trypsin (Sigma, St. Louis, 321 
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MO). After the agar solidified, the plates were incubated for ~48 h at 37 °C. Cells were fixed and stained 322 

with primary antibody anti-H1 (MAB8261, Millipore, Billerica, MA). Plaques were visualized with anti-323 

mouse horseradish peroxidase-conjugated secondary antibody (BD Biosciences, San Jose, CA) and 324 

developed with peroxidase substrate kit (Vector Laboratories, Burlingame, CA).  325 

Viral culture. Viruses were serially passaged in MDCK cells (2.5 x 10
5
 cells/well). The MOI for passages 326 

was 0.01 except for late passages in the first experiment, for which output virus was low and MOI was 327 

adjusted to accommodate. Trajectories were prepared both in the presence and absence of escalating 328 

concentrations of F10 antibody or equivalent concentrations of the control monoclonal antibody 80R. In 329 

passage 4, the antibody concentration was 1X the EC50. For the next passage, the concentration was 330 

increased to 2X the EC50, and then doubled for each subsequent passage as long as >50% cytopathic effect 331 

(CPE) was present. If <50% CPE was present, the concentration of antibody was escalated at a slower rate. 332 

Determination of the EC50 and EC90 for F10 antibody. The EC50 and EC90 values were defined as the 333 

concentration of antibody that reduced plaque number to 50% or 90% of no drug control, respectively. In 334 

brief, 3 x 10
4
 MDCK cells/well were seeded in a 96-well plate and incubated overnight at 37 °C, 5% CO2. 335 

Virus was added to cells at a multiplicity of infection (MOI) of 0.01 in 50 μL of influenza virus growth 336 

medium [EMEM/10% FBS with 2 mM penicillin/streptomycin, 7.5% bovine serum albumin, and 1 g/mL 337 

TPCK-treated-trypsin (Sigma)] plus serial dilutions of F10 antibody. After incubation at 37 °C for 1 h, cells 338 

were washed once with PBS; 200 μL of influenza virus growth medium with the appropriate concentration 339 

of antibody was added and cells were again incubated at 37 °C for several days. Supernatants were 340 

collected when >90% CPE was achieved for at least one antibody concentration. Supernatants were 341 

centrifuged for 15 min at 300 × g at 4 °C and stored at -80 °C. The viral titer for each sample was 342 

determined by plaque assay. Resulting data were fit to a standard binding equation (variable slope, four 343 

parameters) in order to estimate EC50 and EC90 values with GraphPad Prism Version 7 (La Jolla, CA). 344 
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High-throughput sequencing. We developed a high-throughput sample processing workflow, carried out 345 

in a 96-well format, including RNA purification, reverse transcription, whole genome PCR, followed by 346 

DNA barcoding and library preparation, as previously described (42). Libraries were sequenced on the 347 

Illumina HiSeq2000 platform to generate 100 nucleotide reads. 348 

Bioinformatics analysis. An integrated bioinformatics pipeline was developed to trim and bin the raw read 349 

data based on barcode, align reads to the reference IAV genome, and quantify the level of nucleotide and 350 

amino acid variability within the viral population, as previously described (21, 42). To streamline the 351 

processing of large numbers of IAV samples, an SQL database with a web interface was developed, 352 

integrating sample growth conditions with DNA barcoding information. The database was directly accessed 353 

using the analysis pipeline, eliminating the potential of human error when correlating experimental 354 

conditions with large scale IAV genomic data. 355 

 Short reads from the Illumina platform were filtered for quality scores >20 throughout the read and 356 

aligned to the strain’s reference genome using BLAST. Over 95% of the selected reads could be mapped to 357 

the IAV reference genome obtained from GenBank (accessions CY030232, CY031391, CY058484-358 

CY058486, CY058488-CY058489, CY058491). Only alignments longer than 80 nucleotides were retained. 359 

The median sequencing depth was 14,400. Amino acid frequencies were calculated after aligning translated 360 

reads to the corresponding positions in the reference proteins. Unfolded single nucleotide polymorphism 361 

(SNP) frequencies were generated using the IAV reference genome and used for the population genetics 362 

analyses and the amino acid frequencies were used for the structural analysis. The sequencing datasets 363 

generated in this study are available at http://bib.umassmed.edu/influenza. 364 

Population genetic analysis. To distinguish SNPs putatively evolving under positive selection from those 365 

evolving under genetic drift alone, we applied the Wright-Fisher ABC approach (see the software page of: 366 

http://jjensenlab.org) to estimate a global effective population size (Ne) and per site selection coefficients 367 

(s) based on the allele frequency trajectories through time (21, 22, 42). We considered all trajectories 368 
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reaching a frequency of at least 2% in any passage. If at least 99% of the posterior probability density of the 369 

selection coefficient for a given SNP was positive, the site was considered to be significant. 370 

Structural analyses and simulations. The amino acid sequence of influenza A/Brisbane/59/2007 (H1N1) 371 

HA was obtained from UniProt using the accession number B0VX46, which is associated with the 372 

GenBank accession number CY030232. This HA sequence was aligned to the amino acid sequences of 373 

published crystal structures to determine the location of specific mutations on the structure of HA, and the 374 

possible impact of these mutations was determined based on what has been reported in the literature about 375 

HA structure, conformational changes in HA that occur during fusion, and HA receptor binding. The 376 

published crystal structures used in this analysis include F10 in complex with H5 HA (PDB ID: 3FKU), H1 377 

HA bound to the human receptor analog sialylneolacto-N-tetraose c (LSTc) (PDB ID: 2WRG), a 378 

solubilized trimeric H3 HA at the pH of membrane fusion (PDB ID: 1HTM), and H2 HA at neutral and 379 

acidic pH (PDB ID: 3QQB, 3QQO). The mutagenesis wizard in PyMOL was used to mutate residue 203 to 380 

an asparagine in two crystal structures to match the A/Brisbane/59/2007 (H1N1) HA sequence (PDB ID: 381 

3FKU, 2WRG) (64). NA from influenza A/Brisbane/59/2007 strain WT and E329K
NA

 apo structures were 382 

modeled based on N1-oseltamivir co-crystal structure (PDB: 3CL2) through the program Modeller 9.15.  383 

 All molecular dynamics simulations were performed using Desmond (65) from Schrodinger. The 384 

models were first optimized using Protein Preparation Wizard. The simulation systems were then built 385 

through Desmond System Setup using OPLS3 force field (66). SPC solvation model was used with cubic 386 

boundary conditions and 12 Å buffer box size. The final system was neutral and had 0.15 M NaCl. A multi-387 

stage MD simulation protocol was used, as previously described (67). All simulations were performed for a 388 

total of 100 ns. The RMSF of protein backbone and DNA molecule as well as the protein-ligand contact 389 

diagrams were calculated using in-house modified Schrodinger trajectory analysis python scripts. The 390 

electrostatic surface calculations of the final frame in MD simulations were done through PyMol APBS 391 

plugin. 392 
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Reverse genetics and viral rescue. The full-length complementary DNA (eight segments) of 393 

Brisbane/59/2007 virus that were cloned into the pHW2000 plasmid vector to generate reverse-genetics 394 

viruses were obtained from R. Webby (St. Jude Children's Research Hospital, Memphis, TN). Mutations of 395 

interest were introduced into the corresponding HA and NA genes by using QuikChange site-directed 396 

mutagenesis (Agilent). Sanger sequencing was used to confirm the presence of these mutants. Reverse-397 

genetics viruses were rescued by transfecting a co-culture of 293T/MDCK cells with eight pHW2000 398 

plasmids containing the eight virus segments, using TransIT LT-1 (Mirus Bio), as described previously (8 399 

segments, 7 + 1: wt + mutant, or 6+2:wt + double mutant). Rescued P2 virus was sequenced and confirmed 400 

as containing the correct variant NA segment in the uniform backbone from other seven segments of 401 

Brisbane/59/2007. Stocks of viruses harvested from infected MDCK cells were titrated by plaque assay. 402 

These stocks were used to evaluate viral fitness/growth, and for determining EC50 and EC90 values for 403 

oseltamivir and F10. Images of plaques were acquired using a Nikon SMZ1500 microscope. For each 404 

mutant, we used the NIS Elements-BR Analysis program to measure the diameter of 20 randomly selected 405 

plaques. The average plaque size for each mutant was calculated and used as an estimate of growth rate. 406 
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Figure legends 612 

Figure 1. Experimental design and viral amplification for passaging with the broadly neutralizing 613 

antibody F10. (A) Schematic of Experiment 1 and Experiment 2 trajectories. Cyan boxes indicate virus 614 

that was passaged in the absence of antibody, with the top three passages as P1, P2, and P3, and additional 615 

passages as labeled. Red and orange boxes indicate virus that was passaged in the presence of F10 broadly 616 

neutralizing antibody (Experiments 1 and 2, respectively). Grey boxes indicate virus that was passaged in 617 

the presence of 80R control antibody (Experiment 2). (B) Ratios of viral titers (output/input) plotted against 618 

passage number. Experiment 1, upper panel. Experiment 2, lower panel. 619 

Figure 2. Mutations inferred to be evolving under positive selection in the presence of the broadly 620 

neutralizing antibody F10. (A) Trajectories of select mutations elicited by viral passaging with F10, with 621 

80R control antibody, or without antibody, in terms of allele frequency. Mutations individually marked as 622 

A638G and A639T (grey box) are in perfect linkage and yield N203V, as the wild-type sequence is GGT 623 

AAC CAA (AAC = positions 638/639/640), protein: GNQ. The mutant sequence is GGT GTC CAA (GTC 624 

= positions 638/639/640), protein: GVQ. (B) The posterior probability distribution of selection coefficients 625 

(s) for the mutations for Experiments 1 & 2. Specific mutations are listed by influenza viral protein, 626 

nucleotide change, and amino acid change. Seg = segment, Syn = synonymous. (C) Posterior distributions 627 

of effective population size inferred from WFABC. The effective population size was estimated from time-628 

sampled genomic data assuming neutrality. For F10-treated (F10) and control (ctrl), we respectively 629 

estimated Ne to be 208 (99% highest posterior density (HPD) interval: [162, 249]) and 440 (99% HPD 630 

interval: [350, 512]). 631 

Figure 3. Growth of WT and individual mutant viruses in the presence of F10 or oseltamivir. (A) 632 

Viral titers for WT and mutant viruses (HA, NA, and HA-NA double mutant) were grown in the indicated 633 

concentrations of F10 and quantified by plaque assay. (B) Viral response to the NA inhibitor oseltamivir 634 
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was measured for the resistance mutation H275Y
NA

 compared to wild type and the mutation E329K
NA

. 635 

Error bars indicate the standard deviation. 636 

Figure 4. Viral fitness was estimated by plaque size. Plaque diameters of HA and NA mutant viruses in 637 

the absence of F10 (n=20 per virus). Error bars indicate the standard deviation. A one-way ANOVA 638 

multiple comparisons test was performed (***, P < 0.001; ****, P < 0.0001). 639 

Figure 5. Escape mutations identified in the F10 trajectories mapped onto the structure of HA. The 640 

HA trimer is displayed in gray surface representation (PDB ID: 3FKU). The F10 epitope (or footprint) on 641 

the HA stem is displayed as sticks and colored according to degree of contacts with the antibody F10, with 642 

residues with the greatest contacts in green, intermediate in cyan, and smallest contacts in navy blue. The 643 

fusion peptide is in orange stick representation between the F10 epitope (footprint), and the locations of 644 

escape mutations are labeled. 645 

Figure 6. The N460S
HA

 mutation is located adjacent to the fusion peptide. (A) The structure of HA 646 

monomer at neutral pH is shown with respect to the viral envelope and endosomal membrane (PDB ID: 647 

3FKU). The HA1 subunit, which forms the head of HA, is shown in blue, the HA2 subunit, which forms 648 

the stem of HA, is in grey, and the fusion peptide is colored red. (B) The location of mutation N460S is 649 

circled on the structure of HA at neutral pH with the F10 epitope colored as in Figure 5. (C) A zoom-in 650 

view of the stem region harboring N460S, and (D) the hydrogen bond between N460 and the fusion peptide 651 

indicated with a black dashed line. (E) At acidic pH, the fusion peptide dissociates from the stem of HA 652 

and inserts into the endosomal membrane (PDB ID: 1HTM). (F) The structure of HA2 at acidic pH is 653 

shown, where residue N460 is exposed to the surface and is colored yellow (PDB ID: 1HTM). (G) and (H) 654 

show this residue in more detail. 655 

Figure 7. S123G
HA

 is located in a hinge region of conformational change in an early fusion 656 

intermediate of HA1. (A) The surface representation of HA structure at neutral pH where residue S123 is 657 

circled and surrounding residues 115-129 are displayed in green (PDB ID: 3QQB). (B) The structure of an 658 
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early fusion intermediate of HA at acidic pH where residue S123 is circled and residues 115-129 colored 659 

yellow (PDB ID: 3QQO). (C) A detailed view of S123 at neutral pH with surrounding residues colored in 660 

green to show the early conformational changes that occur in HA1 during fusion. S123 is located in a hinge 661 

region of conformational change in HA1, and the direction of the conformational changes that occur at 662 

acidic pH is indicated with red arrows (PDB ID: 3QQB). (D) The resulting structure of the early fusion 663 

intermediate of HA is shown in yellow (PDB ID: 3QQO). 664 

Figure 8. The N203V
HA

 mutation is located in the receptor binding site. (A) The head region of HA is 665 

represented by a grey surface and the location of mutation N203V is labeled with a circle and colored 666 

yellow. The human receptor analog LSTc is shown as gold sticks (PDB ID: 2WRG). (B) N203V is located 667 

in the HA receptor binding site and forms a hydrogen bond with the human receptor analog LSTc. The 668 

hydrogen bond is shown with a black dashed line connecting the side chain oxygen atom of N203 with a 669 

nitrogen atom on LSTc. 670 

Figure 9. The dynamics and electrostatic surface of WT and E329K
NA

. The root-mean-squared-671 

fluctuations (RMSF) of (A) WT and (B) E329K NA during 100 ns MD simulations. The residues are 672 

colored on a rainbow scale from blue to red for increasing RMSF values; hence, warmer colors indicate 673 

residues with more backbone fluctuations. The radius of the cartoon representation also indicates the RMSF 674 

values: the thicker the tube, the higher the RMSF values. The oseltamivir from pdb:3cl2 (black sticks) is 675 

displayed solely to indicate the active site on all four NA molecules. (C,D) The electrostatics surface for the 676 

final frame from MD simulations of (C) WT and (D) E329K
NA

. The residues are colored on a rainbow scale 677 

from blue (positive) to red (negative).  678 

679 
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Tables 680 

Table 1. Sites inferred to be evolving under positive selection (99% posterior probability of s > 0) 681 

Experiment 1 Segment Protein Nucleotide change Amino acid change 

 3 PA T106C L28P 

4 HA A398G S123G 

4 HA G1147A synonymous 

4 HA A1410G N460S 

5 NP T1148C synonymous 

6 NA G1004A E329K 

     

Experiment 2 Segment Protein Nucleotide change Amino acid change 

 2 PB1 G1950A A643T 

4 HA A638G 
N203V 

4 HA A639T 

6 NA G1004A E329K 

 682 

 683 

 684 

Table 2. F10 effective concentration (EC) values for influenza A/Brisbane/59/2007 685 

Variant Epitope region Likely function F10 EC50 

(S.D.) 

F10 EC90 

(S.D.) 

WT -- -- 0.37  0.04 0.49  0.04 

S123G
HA

 Head Modulate fusion pH 0.92  0.12 1.21  0.10 

N460S
HA

 Stem Modulate fusion pH 0.77  0.08 0.91  0.26 

N203V
HA

 Head Receptor binding specificity 0.68  0.03 0.82  0.08 

E329K
NA

 Distal to active site Antigenic drift/modulate 

active site 
0.29  0.01 1.21  0.10 

H275Y
NA

 Near active site Resistance to oseltamivir 0.41  0.01 0.52  0.01 

E329K
NA

_ N203V
HA

 See above See above 0.70  0.06 1.18  0.13 

Note: Data shown in this table are from one experiment. A second independent experiment to determine EC 686 

values yielded similar results. 687 
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