88 research outputs found

    Reconstructing Tonian seawater ⁸⁷Sr/⁸⁢Sr using calcite microspar

    Get PDF
    The Tonian Period followed a long interval of relative stasis and led into the climatic extremes and biological radiations of multicellular life during the Cryogenian and Ediacaran Periods, respectively. However, despite its pivotal situation, it remains relatively understudied, in large part due to the lack of robust age constraints. A combination of fossil evidence, radiometric ages, and isotopic constraints reveal that carbonate strata on the North China craton were deposited between ca. 980 and ca. 920 Ma, thereby filling a gap in marine archives. Here we present 87Sr/86Sr data from selected calcite microspar cements, which filled early diagenetic β€œmolar tooth” cracks, along with data from demonstrably well-preserved bulk carbonate samples. These new data show that seawater 87Sr/87Sr rose in stages from ~0.7052 at ca. 980 Ma to ~0.7063 by ca. 920 Ma, after which a return to low values coincided with the eruption of the Dashigou large igneous province across the North China craton. We also present a new Neoproterozoic seawater 87Sr/86Sr curve, which reveals that the general trend toward higher 87Sr/87Sr during the Tonian Period was checked repeatedly by the input of less-radiogenic strontium from a series of eruptive events, both coincident with and prior to the main breakup of Rodinia. The weathering of Tonian volcanic provinces has been linked to higher carbon burial, glaciation, and oxygenation due to the high phosphorus content of flood basalts. Here we show that the weathering of major volcanic provinces affected material fluxes and ocean chemistry much earlier than previously envisaged

    Continental weathering and terrestrial (Oxyhydr)oxide export: comparing glacial and non-glacial catchments in Iceland

    Get PDF
    Glaciers enhance terrestrial erosion and sediment export to the ocean. Glaciers can also impact mineral specific weathering rates relative to analogous non-glacial terrains. In tandem these processes affect continent sediment export to the oceans over glacial-interglacial cycles. This study summarizes field data from glacial and non-glacial Icelandic river catchments to quantify the impact of weathering regime on iron and aluminium (oxyhydr)oxide mineral formation and flux rates. Aluminium and iron (oxyhydr)oxides are strong indicators of organic carbon preservation in soils and marine sediments. Tracing changes in (oxyhydr)oxide formation and deposition therefore provides a means of evaluating potential changes in organic carbon sequestration rates over glacial-interglacial cycles. Overall, there are several measurable chemical differences between the studied glacial and non-glacial catchments which reflect the key role of soil formation on terrestrial weathering. One of the noted chemical differences is that weathering in non-glacial catchments is characterized by higher apparent rates of iron and aluminium (oxyhydr)oxide formation relative to glacial catchments. However, the offset in (oxyhydr)oxide formation does not appear to be transferred into river sediment compositions, and physical weathering appears to be the dominant control of river sediment composition and export. Glacial rivers export far more total sediment to nearshore marine environments than analogous non-glacial rivers suggesting glacial weathering enhances carbon burial by increasing nearshore marine (oxyhydr)oxide accumulation

    Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar

    Get PDF
    The Tonian Period followed a long interval of relative stasis and led into the climatic extremes and biological radiations of multicellular life during the Cryogenian and Ediacaran Periods, respectively. However, despite its pivotal situation, it remains relatively understudied, in large part due to the lack of robust age constraints. A combination of fossil evidence, radiometric ages, and isotopic constraints reveal that carbonate strata on the North China craton were deposited between ca. 980 and ca. 920 Ma, thereby filling a gap in marine archives. Here we present 87Sr/86Sr data from selected calcite microspar cements, which filled early diagenetic β€œmolar tooth” cracks, along with data from demonstrably well-preserved bulk carbonate samples. These new data show that seawater 87Sr/87Sr rose in stages from ~0.7052 at ca. 980 Ma to ~0.7063 by ca. 920 Ma, after which a return to low values coincided with the eruption of the Dashigou large igneous province across the North China craton. We also present a new Neoproterozoic seawater 87Sr/86Sr curve, which reveals that the general trend toward higher 87Sr/87Sr during the Tonian Period was checked repeatedly by the input of less-radiogenic strontium from a series of eruptive events, both coincident with and prior to the main breakup of Rodinia. The weathering of Tonian volcanic provinces has been linked to higher carbon burial, glaciation, and oxygenation due to the high phosphorus content of flood basalts. Here we show that the weathering of major volcanic provinces affected material fluxes and ocean chemistry much earlier than previously envisaged

    Extreme magnesium isotope fractionation at outcrop scale records the mechanism and rate at which reaction fronts advance

    Get PDF
    Isotopic fractionation of cationic species during diffusive transport provides novel means of constraining the style and timing of metamorphic transformations. Here we document a major (~1‰) decrease in the Mg isotopic composition of the reaction front of an exhumed contact between rocks of subducted crust and serpentinite, in the Syros mΓ©lange zone. This isotopic perturbation extends over a notable length-scale (~1 m), implicating diffusion of Mg through an intergranular fluid network over a period of ~100 kyr. These novel observations confirm models of diffusion-controlled growth of reaction zones formed between rocks of contrasting compositions, such as found at the slab-mantle interface in subduction zones. The results also demonstrate that diffusive processes can result in exotic stable isotope compositions of major elements with implications for mantle xenoliths and complex intrusions

    Tourmaline Reference Materials for the In Situ Analysis of Oxygen and Lithium Isotope Ratio Compositions

    Get PDF
    Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses their 18O/16O and 7Li/6Li isotope ratios are constant within Β± 0.27‰ and Β± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here we provide recommended values for Ξ΄18O, Δ’17O and Ξ΄7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory data that might be present in such datasets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates the presence of a chemical matrix effect on SIMS instrumental mass fractionation with regards to Ξ΄18O determinations, which was found to be < 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass either 128 or 256 splits have been produced of each material, assuring their availability for many years into the future

    Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)

    Get PDF
    Abstract. There is a temporal correlation between the peak activity of the North Atlantic Igneous Province (NAIP) and the Paleocene–Eocene Thermal Maximum (PETM), suggesting that the NAIP may have initiated and/or prolonged this extreme warming event. However, corroborating a causal relationship is hampered by a scarcity of expanded sedimentary records that contain both climatic and volcanic proxies. One locality hosting such a record is the island of Fur in Denmark, where an expanded pre- to post-PETM succession containing hundreds of NAIP ash layers is exceptionally well preserved. We compiled a range of environmental proxies, including mercury (Hg) anomalies, paleotemperature proxies, and lithium (Li) and osmium (Os) isotopes, to trace NAIP activity, hydrological changes, weathering, and seawater connectivity across this interval. Volcanic proxies suggest that NAIP activity was elevated before the PETM and appears to have peaked during the body of the Ξ΄13C excursion but decreased considerably during the PETM recovery. This suggests that the acme in NAIP activity, dominated by flood basalt volcanism and thermogenic degassing from contact metamorphism, was likely confined to just βˆΌβ€‰200 kyr (ca.Β 56.0–55.8 Ma). The hundreds of thick (&gt; 1 cm) basaltic ashes in the post-PETM strata likely represent a change from effusive to explosive activity, rather than an increase in NAIP activity. Detrital Ξ΄7Li values and clay abundances suggest that volcanic ash production increased the basaltic reactive surface area, likely enhancing silicate weathering and atmospheric carbon sequestration in the early Eocene. Signals in lipid biomarkers and Os isotopes, traditionally used to trace paleotemperature and weathering changes, are used here to track seaway connectivity. These proxies indicate that the North Sea was rapidly cut off from the North Atlantic in under 12 kyr during the PETM recovery due to NAIP thermal uplift. Our findings reinforce the hypothesis that the emplacement of the NAIP had a profound and complex impact on Paleocene–Eocene climate, both directly through volcanic and thermogenic degassing and indirectly by driving regional uplift and changing seaway connectivity

    HLA-B-associated transcript 3 (Bat3/Scythe) negatively regulates Smad phosphorylation in BMP signaling

    Get PDF
    Members of the transforming growth factor-Ξ² (TGF-Ξ²) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-Ξ² superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2–Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2–Smad interaction

    Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

    Get PDF
    Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza

    Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

    Get PDF
    The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming

    Modulation of NKp30- and NKp46-Mediated Natural Killer Cell Responses by Poxviral Hemagglutinin

    Get PDF
    Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ΞΆ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection
    • …
    corecore